
OVERHEAD TRAFFIC DETECTOR MOUNTING SYSTEM
(Phase 2)

FINAL TECHNICAL REPORT

Submitted to

CALIFORNIA DEPARTMENT OF TRANSPORTATION

(CALTRANS)

In fulfillment of

RESEARCH TECHNICAL AGREEMENT NO. 65A0166

by

DEPARTMENT OF MECHANICAL AND AERONAUTICAL
ENGINEERING

UNIVERSITY OF CALIFORNIA
ONE SHIELDS AVENUE

DAVIS, CA 95616

Principal Investigators: Fidelis O. Eke and Harry H. Cheng

Research Assistants: Ian Strimaitis and Mathew Campbell

Contract Manager: Joe Palen

Period: June 10, 2003 to April 30, 2007

OVERHEAD TRAFFIC DETECTOR MOUNTING SYSTEM

PROJECT SUMMARY

Caltrans has funded the development of a new family of out-of-pavement electronic

sensing devices for the purpose of monitoring certain characteristics of highway traffic.

One promising example is a laser based overhead detector recently developed at UC

Davis, and jointly patented by Caltrans and UC Davis. In order to deploy this new

generation of detectors, there is a need to develop the capability to safely and efficiently

mount these devices above highway traffic lanes, using existing overhead bridges and

sign structures as support.

During the fiscal years 2000/2001 and 2001/2002, Caltrans funded a project whose main

objective was to carry out a comprehensive engineering study of such a support platform.

The project resulted in the complete design and construction of a working prototype of a

trolley system that will carry the detection and monitoring devices that are under

development or currently available.

The project described in this report constitutes a second phase of the overhead traffic

detector mounting project. One important objective of this phase is to design and build a

portable collapsible truss that can be easily deployed for off-site testing of laser detectors

or other detection devices. Another goal is to develop, construct, and test a reliable

mechanism for mounting and dismounting the trolley system onto and down from the

tracks on which it rides. Occasional mount and dismount of the platform system is

necessary for instrument swapping and for instrument/platform maintenance. The third

and final objective is to build an improved trolley system with an upgraded motion

control system. The goal is to equip the motion control system with a sensor that can

relay the platform’s position information to Caltrans personnel, and the ability to move

the platform precisely to a commanded position above the roadway, without the need for

visual feedback from an operator.

 ii

ACKNOWLEDGMENT

The material presented in this report is based on the research effort of several individuals.

Major contributors to this work include Mr. Ian Strimaitis, whose M.S. thesis work

consisted of the design and construction of both the collapsible truss and the lifting

mechanism. Mr. Mathew Campbell is the only graduate student that participated in, and

made contributions to every phase of the project. He also led the group of students that

worked on the redesign of the trolley system. We also wish to acknowledge the

assistance of post-doctoral researchers Zhaoqing Wang, Bo Chen, Ping Feng, visiting

scholar Hong Duan, graduate students Stephen S. Nestinger, Yucheng Chou,

Kabileshkumar Cheetancheri, and undergraduate students Jonathan Rogado, Saleh

Tyebiee, Arman Rowhani, and Mark Bruening. Each of these individuals made important

contributions to the final outcome of this research project.

We take this opportunity to express our immense gratitude to Mr. Joe Palen, Senior

Research Engineer with ATMIS Development at CALTRANS, who served as Contract

Manager for this project. His frequent advice and suggestions, based on experience and

deep engineering insight were invaluable throughout the duration of the project.

Finally, we are most grateful to CALTRANS for its generous support of our research

efforts through this technical research agreement No. 65A0166.

Fidelis O. Eke and Harry H. Chang

September 2007

 iii

TABLE OF CONTENTS

PROJECT SUMMARY ii

ACKNOWLEDGMENT iii

CHAPTER 1 1

INTRODUCTION 1

1.1 BACKGROUND 1
1.2 PROBLEM OVERVIEW 2
1.3 PREVIOUS WORK 3
1.4 CURRENT WORK 4

CHAPTER 2 7

THE COLLAPSIBLE TRUSS 7

2.1 SPECIFICATIONS 7
2.2 DESIGN CONCEPT 9
2.3 GEOMETRY IMPLEMENTED 10
2.4 SETUP CONFIGURATIONS 11
2.5 I-80 TESTING HEIGHT 12
2.6 OLD HUTCHISON ROAD TESTING 13
2.7 COMPONENTS OF THE COLLAPSIBLE TRUSS 15
2.7.1 LADDERS 15
2.7.2 FISH PLATING 17
2.7.3 PVC INSERTS 18
2.7.4 ALL-THREAD ROD 19
2.7.5 NUTS AND WASHERS 20
2.7.6 GENIE LIFTS 20
2.7.7 STABILIZATION ROPES 21

CHAPTER 3 23

BASIC DESIGN OF THE MOUNTING SYSTEM 23

3.1 TROLLEY 24
3.2 LIFTING MECHANISM 25
3.3 CONSTRUCTION OF THE LIFTING MECHANISM 27
3.3.1 SPECIFICATIONS 27
3.3.2 FIRST PROTOTYPE 29
3.3.3 CONSTRUCTION STRATEGY 30
3.3.4 THE FINAL OFF-THE-SHELF PARTS PROTOTYPE 31
3.3.5 DEPLOYABLE TROLLEY-ABDS LIFTING MECHANISM 33

CHAPTER 4 35

MECHANICAL COMPONENTS OF THE LIFTING MECHANISM 35

4.1 PLUG 35

 iv

4.2 FREE-SPINNING BALL BEARING ON THE PLUG 42
4.3 SLEEVE 43
4.4 SLIDER 48
4.5 SUPPORT FLANGE 53
4.6 PLATE FLANGES 54
4.7 PLATES 55
4.7.1 MOTOR PLATE 56
4.7.2 STATIONARY PLATE 56
4.7.3 MOBILE PLATE 57
4.8 TOGGLE BONE 58
4.9 FINAL ALIGNMENT CONES 60
4.10 STABILIZATION SPRING 61
4.11 TROLLEY STOP 65
4.12 C-CHANNEL INSULATING BUSHINGS 66
4.13 PULLEY-DRUM COVER 67

CHAPTER 5 68

ELECTRICAL COMPONENTS OF THE LIFTING MECHANISM 68

5.1 SPEED CONTROL SWITCH 68
LIMIT SWITCH 69
5.3 POWER TRANSMISSION SPRING ASSEMBLY 70
5.4 DELAY CIRCUIT 71
5.5 MOTOR 72
5.5.1 TORQUE CAPABILITY 73
5.5.2 GEARBOX DESIGN 73
5.5.3 OUTPUT SHAFT SPEED 73
5.5.4 OVERHUNG LOAD RATING 74
5.5.5 BRAND AND DISTRIBUTOR 74
5.5.6 POWER SOURCE 74
5.6 WIRING 74

CHAPTER 6 76

ENVIRONMENTAL FACTORS 76

6.1 SUMMER ENDURANCE TESTING 76
6.2 WINTER ENDURANCE TESTING 77

CHAPTER 7 79

CAMERA LIFTING MECHANISM 79

CHAPTER 8 82

8.1 CLUTCH 82
8.2 LIMIT SWITCH 84
8.3 SLEEVE FRICTION 84
8.4 POWER TRANSMISSION THROUGH FINAL ALIGNMENT CONES 85
8.5 TEST LIFTING MECHANISM TO FAILURE 85
8.6 MOBILE TRUSS COMPONENTS 86

CHAPTER 9 87

 v

THE TROLLEY 87

9.2 ORIGINAL PROTOTYPE 88
9.3 TROLLEY PLATFORM 89
9.4 DRIVE SYSTEM 91
9.5 ALIGNMENT WHEELS 92
9.6 BRAKES 93
9.7 LIFT GATES 99
9.8 POWER 100
9.9 ELECTRONICS AND CONTROL SYSTEM 102
9.10 FUTURE WORK AND IMPROVEMENTS 104

CHAPTER 10 107

CONCLUSION 107

References 109

Appendix I, ABDS-Trolley LM Construction Drawings 111

Appendix II, Camera LM Construction Drawings 122

Appendix III, Truss Construction Drawings 132

Appendix IV, Trolley Lifting Mechanism Bill of Materials 135

Appendix V, Camera Lifting Mechanism Bill of Materials 139

Appendix VI, Truss Bill of Materials 144

Appendix VII, Company Contact Information 146

Appendix VIII, Industrial Scaffolding Pictures 147

Appendix IX, Electrical Schematics 149

Appendix A: Mechanical Drawings 151

Appendix B: Parts List 163

Appendix C: Electrical Schematic 167

Appendix D: Trolley Opcodes 169

Appendix E: Trolley Operator Control Program 170

README 170
HEADER FILES 171

callbacks.h 171
control.h 172

 vi

icons.h 173
interface.h 190
server.h 191

SOURCE FILES 192
callbacks.c 192
client.c 196
control.c 196
interface.c 197
main.c 215
server.c 215

MAKEFILE 220
Appendix F: Trolley Microprocessor Program 221

 vii

CHAPTER 1

INTRODUCTION

1.1 Background

The California Department of Transportation (Caltrans) is interested in monitoring traffic

flow to improve transportation efficiency of California highways. Loop detectors are the

current primary method to determine the presence of an automobile and the approximate

speed. Because loop detectors are buried inside the road’s pavement, installing, repairing,

and replacing them requires lane closure and places maintenance workers near dangerous,

high-speed traffic. Furthermore, loop detectors are known to have low reliably; only 20-

40% of the more than 400 loop detectors installed in California’s roadways produce

useful data most of the time. Speed estimation methodology, using single loop detectors,

is presented in Sun et al. (1999).

A vehicle’s travel time from one point to another is one of the most important quantities

that can be used to measure the effectiveness and efficiency of a transportation system.

To determine the travel time, one identifies a specific vehicle as it passes a point A and

then re-identifies the same vehicle at another point B, at a known distance away. Though

loop detectors can sense the presence of a vehicle, they cannot actually identify a vehicle.

Caltrans currently has no system in California capable of continuously measuring and

reporting travel time for specific vehicles on specific highways.

In an effort to improve transportation intelligence, Caltrans is encouraging and

sponsoring the development of alternatives to loop detectors. Many of the developing

technologies use Video Image Processing System (VIPS), a computer system that

interprets a video image. More information about VIPS and the need for traffic

monitoring is presented in Malika et al. (1997) and Palen (1997). UC Davis has had

 1

technical research agreements with Caltrans to develop a sophisticated Array Based

Detection System (ABDS) capable of counting automobiles more reliably, determining

the speed with accuracy, and recognizing the profile of automobiles for re-identification.

The working principle of the electro-mechano-optical ABDS is explained in references

(Cheng, et al., 2001, Lin et al., 2001; Wang et al, 2004). Information about the

mechanical design and an error analysis of the ABDS system are available in Wang, et al.

(2003).

1.2 Problem Overview

Practically all of the new generation vehicle detection systems (including the ABDS) that

are being developed are designed to monitor automobiles from above traffic. This means

that a suitable method for supporting these devices above traffic must be devised. The

current plan is to use existing sign trusses as mounting platforms for the detection

devices. This eliminates the need to construct entirely new support structures solely for

these detectors.

Deploying automobile detection units above highway lanes is an improvement from loop

detectors because out of ground detectors are capable of obtaining more valuable

information about traffic and do not require cutting into the road’s pavement. However,

overhead detectors have several potential technical problems of their own. It will often be

necessary to deploy and/or retrieve overhead detectors during the development stages.

Even after these detectors are standardized, there will be the need to make changes to a

detector, take a detector out of operation for maintenance, or replace one type of detector

with another. All of these will normally require that one or more traffic lanes be closed,

and, the use of one or more bucket trucks may become necessary. Requesting qualified

personnel and a bucket truck to lift the detector up to the sign or bridge is a burden

because it is time consuming, expensive, and involves the coordination of different

Caltrans departments. The deployment system should also be vandal resistant and only

operated and accessed by Caltrans personnel. The desire is to develop a deployment

 2

system that can position overhead detectors above highway lanes without lane closure,

elaborate equipment, and with minimum disruption to traffic flow.

1.3 Previous Work

In 2001, Jacob Duane (Duane 2001, Duane, et al., 2004) proposed a deployment system

that utilizes existing bridge and sign structures, and that is capable of positioning any

overhead detection unit above highway lanes without lane closure, the need for a bucket

truck, or any additional technical assistance. The design begins with a pair of rail tracks

that are mounted to the underside of existing overhead sign trusses or overpasses. A

motorized trolley hangs from and can run on these tracks. The trolley carries a universal

platform that can connect to any detection unit. Once the detector is attached to the

trolley, the trolley can be remotely commanded to position itself over any lane of traffic

and monitor the automobiles passing directly below. Multiple trolley/detector

combinations can be deployed by the same deployment system so several lanes of traffic

can be monitored at the same location. A prototype trolley was designed and built to

transport UC Davis’ ABDS above lanes of traffic.

To retrieve the detector-trolley package for repairs or any other purpose, the design calls

for the trolley to be driven along its tracks to one end of its support structure; here, it is

above the shoulder of the road and no longer above traffic. At this location, an authorized

Caltrans employee would be able to safely access the detector without disrupting traffic.

A traditional way to access a detector at this location would be with a bucket truck.

However, as indicated previously, this method requires coordination between different

Caltrans departments. A second way to access the detector is simply with a ladder or

stairway that leads up to the end of the trolley tracks. Lifting equipment up to the top of a

ladder is unsafe for Caltrans employees and a stairway creates easy access for potential

vandals. An automatic lifting and lowering mechanism that can lower the trolley-detector

package from the end of the trolley tracks down to the shoulder of the road, and lift it

back to the tracks was a part of Duane’s proposed system in 2001. If Duane’s system

 3

works as intended, then gaining access to the detector will not require any special

equipment or personnel beyond the individual who needs access to the detector. Duane’s

concept for the lifting and lowering of the trolley was refined (Duane et al., 2004) to

improve the alignment of the trolley’s wheels with the track across the highway, but the

concept has yet to be implemented and tested.

Figure 1.1 is a schematic view of how the overhead detector system, as well as the lifting

and lowering mechanism, are supposed to be integrated with existing highway support

truss. The trolley tracks are attached to the underside of the truss, and the lifting

mechanism (LM) is attached to the end of the trolley tracks above the shoulder of the

highway. The LM is shown lifting a trolley-detector package; a second trolley-detector

package is shown already deployed to the middle of the truss span.

o

Figure 1.1, Trolley-Detector Package Deployment

1.4 Current Work

There are three main tasks that are to be accomplished in the current study. The first is t

examine the most recent design concept proposed by Duane (Duane, 2004) for the

trolley’s lifting and lowering mechanism. The goal is to turn the concept into a working

prototype that can be tested on a real freeway truss. With a working trolley and a

 4

functional lifting/lowering mechanism in hand, it is possible to carry out comprehensiv

tests of the overhead detector and its complete support system.

Rigorously testing the LMs, trolleys, and overhead detectors is essential for successful

prototype development and integration of the entire system. A majority of the day-t

testing of the individual components can be performed in a laboratory setting. C

has approved a location on an Interstate-80 overpass for occasional on-site testing to

assess the detector’s performance in a true operating environment. Though it is essential

to test over the highway with actual traffic, preparation for such tests takes significan

time and coordination with Caltrans. Additionally, presentations to the project sponsors

and other investigators will be necessary from time t

e

o-day

altrans

t

o time. Such an overpass with traffic

n it and below it is not a practical location for presenting the trolleys, LMs, and new

ned,

ly go to the vicinity of the platform, use the hand held remote

ontroller to move the platform while visually watching to determine when the platform

is at the desired location above the freeway. The operator will then remotely send a

o

detectors. It is thus desirable to create conditions that will permit investigators and

developers to extensively test detection devices and their support systems in an

environment that closely simulates the true operating environment. This leads to the

second task that is planned for this study. This task is to design and build a portable and

collapsible truss, which, when fully deployed, will have the same height as a typical

highway sign truss. The span is to extend at least one highway traffic lane in length so a

car can be safely driven under it at freeway speeds.

Another item that needs some refinement is the control system for remotely controlling

the motion of the trolley. Though the system is quite sophisticated as currently desig

it only operates in an “open-loop” mode. That is, the system has no sensor that can

determine where the platform is located relative to its tracks. Thus, if an operator wishes

to move a platform and its monitoring device to a specific location above a traffic lane,

he/she would have to actual

c

command to stop the trolley and apply the brakes. The need for visual monitoring of the

platform’s position clearly erodes the degree of accuracy that can be attained in the

positioning of the platform. It would also be desirable for the control system to have a

 5

means of communicating its exact location (and possibly other platform related data) to

Caltrans personnel. Hence, a third objective of this project is to develop an upgrade to

the existing trolley design.

In summary, this project seeks to extend Duane’s work by building a viable

lifting/lowering mechanism for vehicle detectors and their supporting trolley. The project

ill also design and build a structure that can simulate the type of support trusses found

bove traffic lanes on California highways. The project will be concluded with the design

nd construction of an improved trolley system. Chapter 2 will focus on the design and

construction of the collapsible truss. Chapters 3 through 8 will discuss the design of the

lifting mechanism, and Chapters 9 will present the design and construction of an

improved trolley.

w

a

a

 6

CHAPTER 2

THE COLLAPSIBLE TRUSS

Caltrans has approved an I-80 overpass for testing overhead automobile detectors. This

location, however, also includes the dangers of the general public in uncontrolled

automobiles. A collapsible structure that mimics the I-80 overpass, and that can be set up

anywhere at anytime, would allow for more frequent testing and better presentation

environment, without the dangers of uncontrolled automobiles and highway road noise.

Time consuming coordination to set up I-80 test date with Caltrans would also be avoided

for a majority of the testing requiring automobiles.

A location on the UC Davis campus where a collapsible structure can be set up quickly

and easily to simulate a highway overpass was secured. Permission has been granted to

the UC Davis research team by the grounds division to use a ¼-mile stretch of a dead-end

road on campus for testing and presentations on any day for any amount of time.

2.1 Specifications

A collapsible truss and supporting structure, simulating a highway overhead structure,

needed to be designed to perform testing and for giving presentations of overhead

detectors and deployment systems. The span should be modular in its design and have the

ability to be set up in different widths depending on the test location topography or

desired type of testing for the particular day. If the width of the road and shoulders is

limited, the span should be setup with minimal length. If interference from cars in

adjacent highway lanes needs to be simulated for a detector, a wider span should be set

up for simulation of two or three highway lanes below.

 7

The vertical supporting structure needs to be able to position the ABDS at a variety of

different heights. Sometimes the detector needs to be at the height of a typical freeway

overhead sign structure, which is at about 15'. At other times the detector or trolley may

need to be constantly accessed by researchers and the span should then be positioned only

five or six feet above the ground. There is also the necessity of positioning the detector at

the same height above the road as it will be when mounted for testing at the approved I-

80 overpass test site, which is 28' high.

Ease of transportability of the truss components is essential if it is to be assembled at

different locations. The entire span and supporting structure should be transportable in

the back of a pickup or small moving truck. It should be collapsible down to manageable

pieces in weight and size so students, Caltrans workers, or anyone else who might need to

use it can transport it and set it up. If the testing only lasts one hour it would be

unfortunate if the setup and teardown times were two or three hours each. The goal for

setting up or tearing down the mobile truss was between ½ and 1 hour. The trolley tracks

need to be energized to supply the trolley with 12 volts and attach to the mobile truss in a

manner so they are electrically isolated. The collapsible truss criteria are summarized in

Table 2.1.

TABLE 2.1, MOBILE TRUSS CRITERIA

1 Design quickly as it is not the primary design project.
2 Reasonable material costs.
3 Support trolley track, trolley, and ABDS.
4 Tracks electrically isolated and capable of supplying power to trolley.
5 Test at same height as I-80 overpass near Truxel Blvd.
6 Test at variable heights below I-80 overpass height.
7 Modular.
8 Mobility and easy handling to testing locations.
9 Assemble in less than 1 hour.
10 Flexibility to allow for setting up at a variety of location topography.

In short, the mobile truss should be light, easily transportable, of reasonable cost, and

should be designed and built in the shortest amount of time possible.

 8

2.2 Design Concept

A major design philosophy for the collapsible truss was to use as much off-the-shelf

products as possible.

Genie-brand material lifts were researched and purchased because they would give

infinite vertical adjustment of the span from the ground to 25' in the air. Because the

Genie Lifts are designed to only raise 25' in the air, the collapsible truss needed to be of a

design that can hold the ABDS over 28' in the air, which will match the height of the

detector when it is tested on the I-80 overpass.

To create a collapsible span, the idea of using aluminum extension ladders as connecting

sections was conceived. The thought behind this idea was to use the ladder rungs as

attachment points between each section. At first, a 1/4-scale prototype was built to test the

concept. The concept seemed viable and an analysis of a full-scale collapsible truss was

then performed. It took two weeks to develop this idea and obtain all the parts. It took

two days to build the entire structure, and two more days to add the track, the additional

height option, and other accessories. The entire design from conception to deployment

took less than a month and about $2500 in materials. Figure 2.1 shows the prototype set

up on the sidewalk in front of Bainer Hall on the UCD campus.

Figure 2.1, Quarter-Scale Span Prototype

 9

2.3 Geometry Implemented

A few different geometries of a full scale span were evaluated for loading. All ladder

sections were analyzed as two force members; the outcome for all the designs were very

similar, and the final design was chosen for its transportability, ease of assembly, esthetic

appearance, and optimization of members used. A compromise was made between the

length of the ladder pieces used and the final weight of the truss. If long spans of ladder

are used, fewer joints would be required, and less hardware would be needed.

The geometry implemented in the mobile truss is optimized for weight, mobility, and

ease of transportation. Transportation is made simple because no single piece of the span

is longer than 10' and weighs more than 15lbf; the full-length truss weighs under 400lbf.

The truss can be set up in different lengths depending on the space available at a testing

location. More sections can also be added to the current design if a longer span is ever

desired. The full-length setup has been tested with about 1500lbf of weight distributed

unevenly along its bottom ladder sections. The design does not allow the LM to be

cantilevered off to the side of the setup; this wasn’t a concern because it is only for

testing purposes. The cantilevered mount is only essential in LM’s final implementation

on the highway. The full length truss is shown in frame A of Figure 2.2, and a 3/4-length

setup is shown in frame B.

Figure 2.1, Completed Truss

 10

2.4 Setup Configurations

Four different collapsible truss configurations can be used, depending on the level of

testing needed. The first configuration is the most practical for equipment testing without

a vehicle. Connecting each Genie Lift to one side of a single piece of ladder would allow

for testing of the ABDS or LM with the smallest footprint. Figure 2.3 shows this setup.

Figure 2.2, Single Section Truss Setup

he next smallest footprint is with the two outside sections of the collapsible truss put

the

Genie Lifts for this setup is only 10'. Driving a vehicle through this setup isn’t

recommended unless at a very slow speed. Figure 2.4 shows the two-section setup.

T

toge r. For reference, a standard highway lane is 12' wide and the opening between the

 11

Figure 2.3, Two-Section Mobile Truss Setup

2.5 I-80 Testing Height

xtension legs can be added onto any mobile truss configuration to add eight additional

feet to the total height of the span. With the legs added to the mobile truss, the ABDS

testing on the I-80 overpass near Truxel Blvd.

E

optics can reach the same height as when

Figure 2.5 shows the mobile truss in this configuration.

 12

Figure 2.4, Mobile Truss at I-80 Testing Height

2.6 Old Hutchison Road T

Permission was granted by the University to test on Old Hutchison Road. The three-

section setup is used for testing over Old Hutchison Road. The road is 22' wide with

12,000 volt power lines traveling above the north shoulder of the road. Government

regulations require that a 10' minimum clearance be kept around power transmission lines

with a voltage between 300 and 50,000 volts. Thus, the maximum height the ABDSs’

detector can be raised at this testing location is 16'-4". Figure 2.6 shows the schematic of

the three-section mobile truss on Old Hutchison Road. A UCD high-voltage electrician

visited out test site to inspect and approve the mobile truss setup aver Old Hutchison

Road. A picture was taken at Old Hutchison Road during a presentation given to Caltrans

and is shown in Figure 2.7.

esting

 13

Figure 2.5, Three-Section Mobile Truss Setup

Figure 2.6, Presentation Setup

The front (left side) view of Figure 2.6 shows concrete footings on each side of the road

for the Genie Lifts. The footings were poured specifically for the 3/4-length truss setup at

this location. Base rock was packed around each footing to create undulation type

topography if a vehicle were to drive on the shoulder. Frame A of Figure 2.8 depicts the

 14

concrete pad on the north side of Old Hutchison Road. Frame B shows the pad after

poring and before adding base rock. Frames C and D show the sunken hooks used to

anchor the stabilizing ropes to the ground. Two hooks are anchored in concrete on each

side of the road near the barbed wire fence.

2.7 Components of the Collapsible Truss

Frame A of Figure 2.9 shows a display of ladders in the store. Werner manufactures five

different grades of ladders specified by load capacity. The 200lbf ladder grade was chosen

for the quarter-scale truss prototype because it was the lightest weight and the least

expensive. When this ladder was placed on the ground (frame B) at Home Depot,

supported at each end, and load tested, it felt unstable. The 225lbf and 250lbf was also

tested in the same manner. The 225lbf was more stable, and the 250lbf was even more

stable. Home Depot didn’t stock 300lbf or 375lbf extension ladders, but they were much

more expensive and would have made the truss too expensive. The 225lbf and 250lbf rated

extension ladders were evaluated m

Figure 2.7, Concrete Pads

2.7.1 Ladders

ore thoroughly.

 15

Figure 2.8, Ladders at Home Depot

The 225lbf and 250lbf rated ladders have the exact same rung structure, but the 250lbf rated

ladder has slightly heavier duty w bing rigidity kept the 250lbf rated

 are shown in Figure 2.10 with the duty

ratings shown.

ebbing. This extra web

ladder from sagging and shimmying as much when load tested. The 250lbf rated ladder

also added about 10% to the total cost of the ladders and the total truss weight increased

by about 15%. No undesired weight was added with the rungs because they were the

same on both ladder weight grades. The Werner website was used as a resource to better

understand ladder basics and duty ratings. The Type I 250lbf ladder grade was chosen for

the mobile truss span. The ladders purchased

 16

Figure 2.9, Ladders Ready for Cutting

3

d,

3

ble the truss without the additional height legs. Frame A of Figure 2.11 is of pieces

of plywood connecting the span together for the first time. After the fit of all pieces was

checked, the corners were rounded and sanded for safer handling and more stylish

appearance. The finished fish pla ames B and C. The CAD

rawings for each fish plate design are in Appendix III.

2.7.2 Fish Plating

Marine grade /4" plywood was used as fish plating to connect the mobile truss together at

the joints. All plies of marine grade plywood are of the high density Douglas Fir woo

typically only used on the outside layer of common construction plywood. This makes

the wood much stronger in sheer and will not compress nearly as easily when the nuts

and bolts are tightened during assembly. The cost for a 4' x 8' sheet of /4" marine grade

plywood is about $80, while similarly looking construction plywood is $20 to $30.

Four different patterns were created for the entire truss; only three are required to

assem

ting in use is shown in Fr

d

 17

Figure 0.10, Fish Plating

er

were

rner of frame B in Figure

2.12)

2.7.3 PVC Inserts

Determining the hardware to connect the sections of ladder required a novel solution.

PVC garden sprinkler piping and fittings were found, and were almost the perfect size to

slide inside the rungs of the ladder sections. Schedule 40, 1/2" inside diameter PVC

sprinkler pipe was used for the piece that extends through the entire ladder rung. The

O.D. of this pipe is over 1/2" smaller than the smallest inside dimension of the ladd

rung. Sprinkler pipe couplings were added to each end of the pipe. The couplings

just the right size to fit through the ladder rungs with a clearance fit. This needed to

become an interference fit so the inserts could be hammered into the ladder rungs and not

fall out. (Notice the rubber mallet in the bottom right hand co

Figure 2.11, PVC Inserts

 18

To make this an interference fit, with the asymmetrical shape of the ladder rung, the PVC

couplings were sanded down on one side and epoxied or glued to an ABS shim. Frame A

of Figure 2.12 is the box of couplings and shims epoxied together. The assembled inserts

are in frame B. Figure 2.13 illustrates how the insert fits into the ladder rung with a span

ladder piece from the 1/4-scale prototype. Each coupling was sanded down slightly in one

spot (flatted) before pounded into the rung.

2

 reason is

that the 5/8" rod will be able to withstand much greater shear forces than will ever be

applied in the mobile trus own to about 20", just

long enough to pass through the ladder, two pieces of plywood, and the nuts and washers.

Frame A of Figure 2.14 shows the all-thread rod. After the rod was cut down to length,

frames B and C show how it sticks out just far enough to attach the nuts on either side.

Figure 2.12, Ladder Rung Detail with PVC Insert

2.7.4 All-Thread Rod

All-thread rod was chosen for three reasons. The first is that 5/8" diameter rod slides

nicely through a drilled-out piece of 1/ " PVC garden sprinkler pipe. The second is that

the 5/8" rod was available for $2 per 24" length at Blue Collar Supply. The third

s application. The 24" lengths were cut d

 19

Frame D shows a single connection with a piece of all-thread before it was cut down to

size.

.7.5 Nuts and Washers

Grade 2, low carbon steel nuts, nylon lock nuts, flat washers, and spring washers were

used to connect the mobile truss sections. As illustrated in frame C of Figure 2.14, a

nylon lock nut was tightened onto one end of the all-thread rod. A spring washer and flat

washer were placed onto the rod before going through the wood and ladder piece. On the

other end of the installed rod, illustrated in frame B, a flat washer was put on to the all-

thread rod before the last nut, to tighten the connection together, was threaded on.

2.7.6 Genie Lifts

Two ST-25 Genie Lifts were purchased to support the structure on either side. Each lift’s

connection arm can be raised from about 16" to about 24' above the ground. Each lift has

a maximum load of 650lbf. Additionally, Genie Lifts have a very small stowed footprint

(shown in frame A of Figure 2.15), which is less than four square feet at the base. They

ave casters for easy maneuvering and tailgate wheels (shown in frame B) for easy

loading and unloading. The G erous pieces of machinery

if used improperly; proper use of the Genie Lifts and mobile truss is essential for

everyone’s safety. Read the Standard Operating Procedures for the Mobile Truss

Figure 2.13, All-Thread Rod

2

h

enie Lifts can become very dang

 20

(Appendix X) and the Genie Lift Operator’s Manual (Genie, 2001) before engaging in

n. Frame C shows a Genie Lift being unloaded from a truck. Frames

D and E show the Genie Lift hooked up to the mobile truss.

any setup or operatio

Figure 2.14, Genie Lifts

he

2.7.7 Stabilization Ropes

Though the Genie Lifts are designed to lift materials up to 24' in the air, stabilization

ropes are used while lifting the span. The ropes also tie off the span to the ground after

the span has been raised to testing height. The top of frame A in Figure 2.16 shows the

two ropes connected to one side of the mobile truss. Frame B is a close-up view of t

connection. Frame C shows one rope synched down with a tie-down to the eye-hook

buried into the ground with concrete. Frame D is a close-up view of the connection to the

ground. Notice the person in frame A holding the two stabilization ropes for that side of

the truss while it is being raised. This person can dampen out swaying of the truss until it

is securely fastened to the embedded eye-hooks mounted in the concrete pads.

 21

Figure 2.15, Mobile Truss Stabilization Ropes

 22

CHAPTER 3
BASIC DESIGN OF THE MOUNTING

SYSTEM

Duane (2001, 2004) came up with a concept of how to transport a detector between the

shoulder of the road to a monitoring position above highway. He also built the first

prototype trolley, which can shuttle a detector along the underside of an overhead truss.

he next step is to build the first prototype lifting mechanism to transport a detector

) as

T

between the ground and the underside of an overhead truss. The following sections

describe the concepts proposed by Duane for the mobile platform (or trolley system

shown in Figure 3.1, and the lifting mechanism.

Figure 3.1, Trolley Conceptual Model

 23

3.1 Trolley

The overhead automobile detector deployment system is to retrofit to the underside of

existing structures eliminating the need for a special truss to be built. The main

components of the system are a trolley that rides on a pair of tracks attached to the

underside of the structure, and a lifting mechanism to raise the trolley from the ground up

to the tracks running above the highway. The detector will be attached to the belly of the

trolley on the ground and will remain on the trolley at all times. The plan for the tracks is

to use two aluminum C-channels running parallel to each other. The tracks are held a

fixed distance apart and attached to the underside of the structure approximately every 6'.

These tracks are connected to the bottom of the truss walkway I-beams using clamps. The

trolley is capable of carrying any overhead detector such as the ABDS. The trolley is

equipped with four electric motor driven wheels which allow the system to ride along the

er

ly

ion between the strips and the trolley is

electrically isolated from the tracks via a thin plastic backing. This method of supplying

power to the trolley allows the trolley to be a freely moving system that is uncoupled

C-channel tracks so that the whole system can be positioned at any desired location ov

traffic.

The mobile platform is able to accommodate many different monitoring devices. This is

possible because of the use of a mounting plate that allows various shapes and sizes of

monitoring devices to be attached to the trolley. Different monitoring devices may need

unique mounting plates; however, this should not pose a major problem since these plates

are inexpensive and can be easily fabricated. The main advantage of the mounting plate

idea is that the trolley itself will not have to be modified to accommodate a device.

Supplying power to the trolley system required a novel solution. The method developed

by Duane utilizes a thin copper strip attached to each piece of C-channel track to supp

power to the trolley. The physical power connect

made using metal brushes that are attached to the trolley and that continuously rub on the

strips. This eliminates the myriad problems associated with the use of cables to conduct

power directly to the trolley. One of the copper strips is to be connected to the positive

terminal of a power supply and the other strip to the negative terminal. The strips are

 24

from other trolleys on the same pair of tracks. The trolleys can thus be repositioned

quickly and easily, and without cables dangling over highway traffic.

3.2 Lifting Mechanism

Duane also proposed a novel idea for a lifting mechanism to mount/dismount the trolley

with the tracks above the highway. The mechanism is shown in Figure 3.2. It consists of

two major parts – a mobile plate (detector mounting platform), and its support assembly.

The mobile plate has two short pieces of trolley track spaced the same distance apart as

the trolley tracks extending across the freeway. These tracks are held in place by the

mobile plate. Connected to the top of the mobile plate is a cone called the plug with a pin

on its side.

Figure 3.2, Lifting Mechanism Conceptual Model

 25

The second part of the lifting mechanism is a winch system that is rigidly and

permanently attached to the support structure where the trolley tracks end. The winch

system includes a small motor that is used to wind or unwind cable from a spool.

of the cable is attached to the plug on the mobile plate, and thus carries the platform at all

times. The same cable is passed through a sleeve, and connected to the pulley drum.

During normal operation of the trolley system, the mobile plate is held at one end of th

trolley tracks in such a way that its short section of track is properly aligned with the

track running above the highway. The mobile plate is held up by the cable and winch

assembly. When access to the overhead detector is necessary, the trolley is remotely

commanded to move to the end of the tracks where the lifting mechanism is located. T

trolley can then continue and drive onto the tracks of the lifting mechanism. The trolley’s

static constra

 One end

e

he

int system is remotely commanded to engage, so that the trolley is securely

lamped onto the platform. The motor for the winch system is then commanded to turn

the cable pulley to lower the mobile plate. When the detector reaches the operator

standing on the ground, the lifting mechanism can be commanded to turn off the winch.

The trolley can then be dismounted from the mobile plate and serviced.

To return the trolley and ABDS to above the highway traffic for monitoring, a reverse

procedure is used. The winch is activated to raise the mobile plate, with the trolley

system firmly held onto the platform. As the mobile plate is raised the trolley system will

typically be spinning from the wind. However, as soon as the alignment pin of the plug

hits the contour of the sleev and the mobile plate’s

 the

 the need to hoist someone up to

e supporting structure. Direct access to the detector is achieved at a location off

highway, and even off the shoulder of the road. This is a safe way to access an overhead

c

e the pin pushes off of the contour

rotation is controlled. The mobile plate is rotated to where the short section of track on

the LM are aligned with the track extending across the freeway. The trolley can then be

commanded to release its constraint system and drive onto the tracks extending across

highway and position itself over highway traffic.

The deployment and retrieval described above eliminates

th

 26

detector, and saves both time and financial resources by not involving personnel from

ype must also be built. The prototype will follow Duane’s

lignment concept and also interface with the trolley and overhead truss structure as he

3.3.1 Specifications

sign and construction could

egin, was to determine the specifications necessary for the LM design. The most

ecome unsafe and have

potential to injure any person, its evolution needed to be redirected back to a safe design.

ng

f

t

at

several Caltrans departments.

3.3 Construction of the Lifting Mechanism

The LM design proposed by Duane is only a concept thus far. Along with building a

support structure to mimic an overhead highway structure, a fully functional and

deployable LM protot

a

envisioned.

An intermediate task that needed to be completed before de

b

important criterion was safety. If the design were to ever b

The people it could possibly injure would include and are not limited to the operator, on-

lookers, automobile drivers, transients, or even the designers operating the LM duri

development and testing.

The second most important criterion for the design was that it be reliable; reliability was

significant for a number of reasons. A lot or resources are being devoted to the design o

a deployment system that will simplify the deployment and retrieval of automobile

detectors from above lanes of freeway. For the outcome of this deployment design projec

to be viable, the LM must work perfectly every time. It must not become a problem in

itself that requires resources to repair or maintain. One of the reasons the deployment

system is being developed is because it will be used to routinely service equipment that is

under development. It simply does not make sense to use unreliable equipment to retrieve

a detector that you know will need retrieving. To make sure the LM stays reliable it needs

to be protected from the weather. This includes rain, sun, dust, and even nesting birds th

may disrupt the mechanics.

 27

After safety and reliability are assured, the next most critical criterion is to be abl

perform the intended operation of deploying and retrieving the trolley, with its detector

between the end of the tracks and the person on the ground. Different detectors may

mounted to the trolley with its universal platform and this l

e to

,

 be

oading may be asymmetric,

specially during the products development. If the trolley is ever loaded asymmetrically,

, it was

Once the LM has lifted the trolley all the way up, and the mobile plate is secured, the

trolley is to drive onto the tracks extending across the freeway. Because the trolley gets

its power from the track it drives on, the short section of track connected to the mobile

plate must become energized so the trolley can harness power and drive off of them.

After the basic mechanical operation is under control, the next consideration would be to

eliminate the possibility of vandalism of the LM and its controls. At the same time, the

operator must be at a location on the ground near the LM so he/she can stop the lowering

of the detector-trolley package when it reaches the ground.

From an operator’s point of view, the quicker the LM can lift and lower the trolley, the

more efficient its design. Any deployment system, such as the one proposed, will save an

immense amount of time because of the technical resources and support it eliminates. To

keep this design novel, it would only make sense to have the retrieving and deploying

time between the tracks and ground reasonably short. While 30 minutes may be very

reasonable to wait for the LM to operate (the previous alternative was two Caltrans

departments, 3 employees, and half of a day), a descent or ascent time of 1 to 5 minutes

would be ideal. The last criterion to remember is that Duane has come up with an

incredibly simple idea in concept. Sticking closely to his idea will render a very simple

e

the mobile plate or entire LM will need to accommodate it accordingly, in particular

during the alignment phase. The current trolley design weighs about 25lbf and the current

detector being developed at UC Davis is about 50lbf. This total weight of 75lbf is believed

to be a typical, if not maximum weight for any detector-trolley package under

development. Though weights of detectors and trolleys are expected to decrease

determined that the LM should be able to lift this 75lbf at a minimum.

 28

and reliable design. The preliminary criteria compiled for the design are shown in Table

3.1.

TABLE 3.1, LIFTING MECHANISM CRITERIA

1 Safety
2 Reliability
3 Weather proof
4 Deploy and retrieve a 70 , asymmetrically loaded, trolley-detector package lbf

5 Vandal deterrent mechanical design and control system
6 Quick lifting and lowering
7 User controls the LM from the ground near its mounted operating location
8 Follow Duane’s Concept because it is an exceptionally simple and novel idea

t. The

e was made out of an

luminum cylinder. The plug was mounted to a piece of 1/4" aluminum plate. A piece of

’s design called for. Frame A of

Figure 3.3 shows the plug and sleeve side by side, with the pin sticking out of the side of

the plug. Frame B of Figure 3.3 shows the sleeve over the plug with the bottom of the

sleeve’s contour resting on the pin. Notice that the pin is resting on somewhat of a flat

spot on this sleeve and does not naturally twist in either direction to perform the

rotational alignment. Frame C of Figure 3.3 shows the profile of the contour from another

perspective.

3.3.2 First Prototype

A group of undergraduate students made a first attempt to build a partially working

prototype of Duane’s design as part of their senior design project. The purpose of this

first prototype was to begin to understand the heart of Duane’s design - how the plug

would slide into the sleeve, and how the pin would perform the rotational alignmen

prototype they came up with is illustrated in Figure 3.3. This prototype’s plug was made

from a piece of solid aluminum round-stock, and the sleev

a
1/2"-diameter nylon rope, and a DC gear motor were mounted to a metal support frame

and used to pull the plug into the sleeve just as Duane

 29

Figure 3.3, First prototype Components

Three new criteria were acquired from the problems encountered with the function of this

first LM prototype. First, the contour the pin slides on needed to be redesigned so it does

not have any flat spots. Second, there was too much friction between the pin and the

sleeve’s contour when it did slide along the contour. Third, because the plug and sleeve

are both made of aluminum, there is too much friction between the inner wall of the

sleeve and the plug when the pin tries to rotate the plug.

3.3.3 Construction

After studying the functioning of the first prototype, it was realized that constructing a

fully functional, reliable, economically affordable, safe, and esthetically appealing LM

he strategy adopted was to build a series of

es until every detail of a reliable LM was understood. A total of 5 prototypes

development shop using as many off-the-shelf parts and

products as possible.

fter all the necessary mechanics were determined and completely understood for a

reliable LM, the next step was to build the first, deployable prototype. This prototype

wou

ultimately b tion of

is prototy

Strategy

would take many steps to develop. T

prototyp

were built in a prototype

A

ld be very robust, look professional, and be ready for use in the environment it will

e deployed in. Attention must be paid to every detail in the construc

pe because it must work perfectly every time. th

 30

3.3.4 The Final Off-the-Shelf Parts Prototype

ious

 of

t

.

cisely positioned

o the trolley can drive off the mobile tracks and onto the tracks extending across the

ighway. A new component called the final alignment cone was introduced to make sure

s precisely aligned and secure when docked. Frame E is a view looking

 set

e

n

rives on, the mobile tracks

f the LM must become energized if the trolley is to drive off of them. Two black power

transmitting modules made of garden pop-up sprinkler heads, which are shown in frame

E, supply power to the mobile trolley tracks when the mobile plate is docked. The mating

power transmitting modules on the mobile plate are also made of black plastic

components from garden sprinklers, and can be seen in frame B of Figure 3.4.

The final off-the-shelf parts prototype perfected all of the design concepts of the prev

prototypes. Frame A of Figure 3.4 shows this prototype mounted on a piece of the

collapsible truss. Frame B shows the lifting mechanism’s mobile plate hanging below the

stationary plate. Frame D introduces a new component called the slider, which is made

clear acrylic for this prototype. The slider sits at the bottom of the sleeve, extending jus

below the sleeves contour, and holds the cable in the center of the sleeve to ensure the

plug slides into the sleeve when it comes back up and begins the rotational alignment

When the mobile plate is docked, it is essential that it be secure and pre

s

h

the mobile plate i

up at the stationary plate and shows a set of four final alignment cones. There is also a

of four final alignment cones on the mobile plate to mate with these cones, which can b

seen in frame B of Figure 3.4. The final alignment cones on this prototype were made

from white PVC pipe and white Delrin rods. The pin on the side of the plug has also bee

replaced by a ball bearing to significantly decrease the friction that inhibited the

alignment function in the first prototype. The sleeve was made of ABS plastic and the

plug was made of acrylic to reduce the friction when the ball bearing performs the

rotational alignment by rolling along the sleeve’s contour.

Because the trolley gets its electrical power from the tracks it d

o

 31

Figure 3.4, Fianal Off-the-Shelf Parts prototype

This prototype was eventually modified to include a gear motor. The friction and inertia

of the gear motor must be able to hold the mobile plate with trolley-ABDS package in

midair and not unwind when the motor turns off. No specifications are given for most

motors that specify how much applied torque to the shaft is needed to turn a gear motor

armature. Through experimentation, it was determined that a 1/20-HP motor with 190 in-

pounds of output torque through a gear ratio of 130:1 in a parallel shaft gearbox is not

enough to hold up 70 pounds of force (lbf) in midair and as a result, the motor unwinds.

The motor on a deployable LM should have a worm-gear drive, and possibly a higher

gear ratio.

Because the motor was incorporated for the first time in this prototype, the first version of

the electrical control system was also pole double throw switch (with

eutral position) shown in frame C gave the motor up and down direction. A capacitor

nd a diode bridge were also incorporated to convert alternating current (AC) to direct

 created. A two

n

a

 32

current (DC). The limit switch shown connected to the underside of the stationary plate in

frame E opened the circuit when the mobile plate docked.

A o

n o

step was to make a prototype d be capable of lifting the

trolley

would need to be improved in the deployable prototype. One of the improvements that

eeded to be made for a more robust overall design that can lift and align over 70lbf, is a

3.3.5 Deployable Trolley-ABDS Lifting Mechanism

bust LM

ntire

ment phase for the LM.

lm st all of the mechanics and components were incorporated into this LM. There were

o m re unknowns in the design and the prototype shop work was complete. The next

to be deployed and that woul

 and a detector. There was, however, still some shortcoming of this prototype that

n

stronger sleeve and supporting structure. Another improvement is to be the addition of

another new component called the toggle bone, which protects the apex of the sleeve’s

contour from the ball bearing on the plug. It will also be necessary to use a motor that

won’t unwind by the weight of trolley and detector when the motor stops.

Finally, the capstone LM in the series of seven LMs has been completed. This ro

is rated to lift 90lbf and is the first prototype cable of lifting and controlling the entire

weight of the trolley and ABDS reliably. Its motor can easily control the ABDS weight

and the sleeve can easily control the inertia as the alignment phase takes place. The e

prototype is made of aluminum and Delrin with ABS brackets and steel fasteners.

Weather shielding has been manufactured and can be mounted onto the LM to make it

rain proof. This LM’s motor can actually lift over 200lbf.

Figure 3.5 shows the Deployable Trolley-ABDS LM. Figure 3.6 shows six consecutive

images of the rotational align

 33

Figure 3.5, Deployable Trolley-ABDS Lifting Mechanism

Figure 3.6, Alignement Action

 34

CHAPTER 4

MECHANICAL COMPONENTS OF
THE LIFTING MECHANISM

This section explains in detail the geometry, material choices, and interaction of the

major mechanical components for the Deployable ABDS-Trolley LM. The unique

features and novel solutions to problems with Duane’s concept will also be explained

Figure 4.1 should be used as a tool and referenced for part names and locations while

reading this chapter. The deployable LM is shown in two instances in this figure. The

image on the right shows the LM sitting on the ground and the image on the left shows

the LM mounted to a cantilevered piece of the collapsible truss. Additional pictures

throughout this document will illustrate individual component details.

4.1 Plug

Frame A of Figure 4.2 is a good illustration showing the plug connected to the MPA.

Frame B is a closer view lider into the sleeve.

f

e

of the top of the plug; it is pushing the s

The amount of weight the LM must rotationally align determines how long the plug must

be; the heavier the weight being lifted, the longer the plug. All the previous prototypes

had plugs between 2" and 12" long and were only able to rotationally align between 5 lb

and 25lbf, respectively. The plug for the deployable LM was made from a 23" long piece

of 2" diameter Delrin round-stock. On the most recent of the previous prototypes th

nominal 2" diameter dimension was chosen because it is a common size of round stock

 35

materials and easy to obtain. The 2"-dimension continued into the deployable prototype

for additional reasons - all of which are outlined in Table 4.1.

s

Labeled Figure 4.1, Lifting Mechanism Components

 36

Figure 4.2, Plug

TABLE 4.1, 2" NOMINAL DIMENSION DIAMETER CRITERIA

1 Common size and easy to source.
2 Large enough to create a well defined contour on the corresponding 2" ID sleeve.
3 The 1" diameter stabilization spring can fit inside the plug.

4
¼-20 threads can be tapped into the bottom of the plug, around the stabilization

spring hole, to attach the mobile plate.

5 A sleeve with this diameter is very rigid and can act as a back-bone for the entire

LM.

A total of five holes are drilled in the bottom end of the plug. Four are located around the

perimeter of the plug and taped with 1/4-20 threads; these are used to connect the plug to

the mobile plate. The fifth hole, which is a 1" diameter counter-bore 14" deep houses the

stabilization spring. At the bottom of the counter-bore is a 1/8" diameter thru-hole that

extends the rest of the way through the plug. On the side of the plug is a 1" deep taped

hole to attach the free-spinning ball bearing.

/4" X /8" chamfer, which accommodates a slight

misalignment between the plug and the sleeve before the plug slides into the sleeve’s

At the top end of the plug is a 1 3

 37

contour. The misalignment that must be accommodated for comes from three clearance

sary in the design of the LM. The first clearance fit is the 0.020"

diametrical clearance between the slider’s outside diameter and sleeve’s inside diameter.

8

The trolley LM has the longest plug of all LMs designed thus far. The length is

determined from three primary criter g lifted, the height of the sleeve’s

up

gh

hich was determined by experiment, the plug must be engaged with

e sleeve above the contour and transition curve before the plug’s free-spinning ball-

r

fits that were neces

The second and third clearance fits are the 1/ " holes the cable passes through at the top of

the plug and also at the bottom of the slider. The three clearance fits add up to a 0.145"

possible misalignment, the 1/4"-dimension is more than double the possible axial

misalignment and will ensure the plug slides into the sleeve’s contour and doesn’t get

jammed on the toggle bone.

ia: the mass bein

contour, and the height of the trolley track. Describing how the total plug length was

determined will be broken into two parts; the length above and the length below the

plug’s free-spinning ball bearing.

The determination of the length above the free-spinning ball bearing will be described

first (see Figure 4.3). Before any rotational alignment can begin the plug needs to be

inside the sleeve, above the contour and transition curve by a certain distance. This

distance is to be long enough to give the plug torsional bearing against the sleeve’s wall

when the plug’s free-spinning ball bearing begins to turn the plug. If there is not enou

of the plug above the contour rubbing against the sleeve’s inside wall, the plug’s free-

spinning ball bearing pushing against the contour can cause the plug’s axis to skew with

the sleeve’s axis. This skewing is a result from the necessary diametrical clearance fit

between the plug and sleeve. As shown by previous prototypes, the skewing can cause

the plug to jam when the sleeve’s contour digs into the side of the plug. To align 70lbf, the

minimum length, w

th

bearing makes any contact with the sleeve or toggle bone is 4". As the mass increases o

the faster the plug is moving upwards, the distance the plug needs to be inside the sleeve

before any rotational alignment begins increases.

 38

In addition to the 4" of plug length above the contour and transition curve, there is also

the plug length to extend past the transition curve, contour, and toggle bone. Also, adding

 other lengths such as the 3/8" of chamfer height, and half the diameter of the plug’s

ee-spinning ball bearing, the hole for the free-spinning ball bearing needs to be drilled

.3 are summarized in the top half

of Table 4.2.

in

fr

11-5/8" from the top of the plug. The values of Figure 4

Figure 4.3, Plug Engagement Before Rotation

 39

When the plug’s free-spinning ball bearing is just below the toggle bone’s free-spinning

ball bearing (as shown in Figure 4.3), the height the plug’s free-spinning ball bearing

needs to travel up to complete the alignment will determine the rest of the plug’s total

length. The bottom half of the total plug length will be determined next. To rotationally

align the LM’s tracks with the tracks across the road, the plug’s free-spinning ball

bearing must travel up 1" to the apex height, 4" to the top of the contour, 2" to the top of

the transition curve, and up the 4" tall slot. The bottom half of the plug’s free-spinning

ball bearing, which is 1/4", also contributes to the height below the plug’s ball bearing.

Notice that the plug’s free-spinning ball bearing does not quite reach the top of the slot in

Figure 4.5 as it is not designed to be the co e mobile plate from

oving up vertically; this job is for the final alignment cones. An additional 1/8" was

dded to the slot length so the plug’s free-spinning ball bearing would not bottom out on

e-spinning ball bearing of 11-3/4", and

below is 11-1/4", which totals a 23"-long plug.

mponent that stops th

m

a

the slot. The farthest the plug’s free-spinning ball bearing can travel up into its slot on the

sleeve is shown in Frame C of Figure 4.5. The lengths to create the plug length below the

free-spinning ball bearing is summarized in the bottom half of Table 4.2. Thus far, the

plug has a minimum length above the plug’s fre

 40

Figure 4.4, PLug Length Below the Plug’s Free-Spinning Ball BEaring

 41

TABLE 4.2, PLUG LENGTH CRITERIA

Plug Length Above Free-Spinning Ball Bearing
1 3/8" 1/4" x 3/8" chamfer around top of plug.
2 4" Minimum plug engagement into sleeve above contour and transition
3 2" Transition curve height between contour and sleeve.
4 4" Contour height.
5 1" Distance toggle bone’s free-spinning ball bearing hangs below contour’s
6 1/4"

 Half of the plug’s 1/2" diameter free-spinning ball bearing.

7 1/8" Plug bearing can not bottom out at the top of the sleeve’s slot.
11-3/4"

 Total length above Free-Spinning Ball Bearing

Plug Length Below Free-Spinning Ball Bearing
1 1" Distance toggle bone’s free-spinning ball bearing hangs below contour’s
2 4" Contour height.
3 2" Transition curve height between contour and sleeve.
4 4" Length of 0.502" wide slot.
5 1/4"

 Half of the plug’s /2" diameter free-spinning ball bearing. 1

11-1/4"
 Total length below Free-Spinning Ball Bearing

4.2 Free-Spinning Ball Bearing on the Plug

The plug’s free-spinning ball bearing replaces the pin described in Duane’s proposal for

the LM. This ball bearing performs the rotational alignment by rolling along the sleeve’s

contour as the plug is pulled into the sleeve. Previous prototypes showed that it is

essential to have a ball bearing used in place of the steel pin to reduce the friction as the

rotational alignment occurs. Frame A of

Figure 4.5 shows two close-up views of the free-

inning ball bearing. Notice how the ball bearing is offset away from the plug with a

washer. This washer has been placed between the ball bearing and plug

bearing is attached with a flat head machine screw with a head diameter of 0.003" larger

sp

0.025" thick shim-

to keep the ball bearing’s outer race from rubbing against the plug.

Frame B shows the plug’s free-spinning ball bearing rolling off the toggle bone’s free-

spinning ball bearing. Frame D shows the free-spinning ball bearing rolling along the

transition curve just before it enters into the 4" long slot. Frame C shows the plug’s free-

spinning ball bearing at the top of the slot when the mobile plate is docked. The ball

 42

than the ball bearing’s inner diameter. This results in a low profile grip as the machin

screw holds the ball bearing onto the plug.

e

Figure 4.5, Free-Spinning Ball Bearing on the Plug

4.3 Sleeve

The sleeve performs two primary functions for the LM; it acts as the backbone for the

entire apparatus, and its contour performs the rotational alignment of the MPA with the

plug’s free-spinning ball bearing. As the backbone for the entire LM, the sleeve must

support the weight of the mass being lifted and be accommodating for attachment of

other components such the flanges and control switches. The sleeve has a 2" inner-

diameter to fit around the plug. The sleeve is shown in Figure 4.6.

 43

1 1

1

 the

1

revious prototypes

iled to work properly when 20lbf was rotationally aligned because the inertia of the

1

1

1 sleeve length was determined from the following four criteria. The sleeve

eeds to be long enough to fit the slider and the plug inside. Above the slider, there needs

 be room for a slot so the limit switch lever can extend through the wall of the sleeve to

make contact with the slider to trigger the motor to stop. At the top of the sleeve, just

above the limit switch slot, 2" is needed to connect the motor plate flange. These criteria

are summarized in Table 4.3.

Figure 4.6, Sleeve

The /4" wall thickness was chosen for four reasons. First, /4" was enough thickness to

tap four (4) full threads for a /4-20 SAE machine screw and attach the flanges. Second,

The load path of the trolley and detector being lifted goes from the pulley through

sleeve to the static plate where the LM is mounted to its supporting structure. With all the

slots in the sleeve it loses its closed cross-section along a majority of its length, and the

sleeve is not as rigid as it was before. The /4" wall thickness makes the sleeve rigid

enough that it doesn’t collapse on the plug and slider under loading. Third, when the

plug’s free-spinning ball bearing runs into the sleeve’s contour and the mass being lifted

starts to rotate, a lot of torque is applied to the sleeve’s contour. P

fa

mass deformed the sleeve enough that the secondary alignment components completely

missed and did not even have a chance to engage and finalize the rotational alignment.

The /4" wall thickness has made this prototype very robust and able to control over 200lbf

without the sleeve deforming. Lastly, the /4"-thick walled tubing is easily available and

reasonably priced.

The 31- /2"

n

to

 44

TABLE 4.3, SLEEVE LENGTH CRITERIA

1 22" Plug length. (1" is not inside the sleeve)
2 6" Slider length
3 1- /1

2" Limit switch slot.
4 2" Connection for motor flange.

The sleeve’s contour is by far the most unique looking feature of the LM. The plug’s

free-spinning ball bearing rolls along this contour to perform the rotational alignment of

the plug and mobile plate. The single hole with a counter-bore near the contour’s apex is

for connecting the

 toggle bone, which will assist in a guaranteed rotational alignment.

here are also three sets of hole patterns on the sleeve for connecting the static, motor,

and stabilization flanges. These holes are tapped with 1/4-20 threads. The sleeve also has a

total of six slots cut in it. One slot is an extension of the contour. Two of the slots are for

the limit and speed control switches. Two more slots that run almost the entire length of

the sleeve limit the slider’s travel. The sixth slot was for an idea that never needed to be

implemented.

The contour at the bottom of the sleeve performs the primary alignment of the plug and

mobile plate. As described earlier, the First Prototype had problems because its sleeve

was created by cutting a tube in

as seen from the pin’s (now free-spinning ball bearing) reference frame. A contour with a

constant slope as seen from the reference frame of the plug’s free-spinning ball bearing

was the solution to eliminating the flat spots like the ones on the First Prototype’s sleeve.

This contour geometry, which was used on the deployable LM, was created in a manner

similar to how one would begin folding a paper airplane. Start by folding an 8- / " x 11"

piece of paper in half, then open it back up and fold in two corners to the fold line as

shown in frame A of Figure 4.7. Wrap the paper around a cylinder and trace the contour.

T

half at an angle, which left two flat spots on the contour

1
2

 45

Figure 4.7, Contour Geometry

e

A few folded papers were wrapped around different sized tubes as shown if frame B. The

vertical length the contour occupies along the tube axis was recorded and plotted against

the outside diameter of the tube. Figure 4.8 is the plot, which shows that a 2-1/2" OD tub

with a contour angle of 45° has a height of 4".

Contour Height as a Function of Tube O.D.

y = 1.5908x - 0.0074

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5

Tu

Co
nt

ou
r H

ei
gh

t (
in

ch
es

)

be O.D. (inches)

45° Wrap
Linear (45° Wrap)

Figure 4.8, Contour Wrap Equation

 46

The f st attempir t to make the sleeve’s alignment contour angle with this new method was

d

gle

After the plug’s free-spinning ball bearing rolls along the contour, it rolls along a 4" long

the tracks become coincident with the

he

slot

plug’s free-

spinning ball bearing so the bearing would travel freely up and down the slot. This

clearance fit was kept tight because the more the plug is allowed to rotate inside the

sleeve, the more the mobile trolley tracks can rotate, and this can cause the mobile tracks

to get caught up with the stationary tracks.

There is also a transition region between the contour and the slot for the plug’s free-

spinning ball bearing. The location of this transition is specified in Figure 4.3. Although

it may not be obvious, this transition curve can be seen in Figure 4.6. Notice that as the

plugs free-spinning ball bearing rolls along either side of the contour, it will roll smoothly

into the 0.502"-wide, 4"-long slot. Previous prototypes, which did not have a transition

t as the plug’s free-spinning ball bearing was

channeled into the slot abruptly.

tate the sleeve to the correct angle for

at 45° and worked just fine. However, if the slope were steeper the LM would be taller

and the alignment phase could happen faster. If the contour was shorter the LM woul

have to lift the trolley slower during the alignment phase. The 45° is the middle an

between 0° and 90° and seemed like a good starting point for the first deployable

prototype. So, 45° it was because optimization was not in the scope of this project.

slot, which keeps the MPA from rotating while

tracks across the highway. The length of 4" was chosen because the tracks are 3" tall. T

additional 1" was added for the plug’s free-spinning ball bearing to stabilize in the

before the top plane of the MPA tracks rise above the bottom plane of the stationary

tracks. The slot was oversized 0.002" greater than the diameter of the

curve, jerked the trolley and LM around a lo

The sleeve was the most challenging component of the LM to make because of its size

and unique contour feature. There was barely enough travel on the mill to cut the long

slots for the slider without needing to redesign the LM for length. As shown in Figure

4.9, two indexing chucks were used to hold and ro

 47

cutting or drilling the corresponding holes or slots. The vise in the middle of the table

minimized the amount of vibrati ilizing the sleeve at mid-span.

on from the cutter by stab

Figure 4.9, Manufacturing the Sleeve

 is drawn in a unique manner because it is shown in a flat plane

with length dimensions in inches and the dimensions around the cylinder (sleeve) are in

degrees. By dimensioning the sleeve in this manner, the entire sleeve can be drawn,

dimensioned, manufactured, and understood from the single 2-dimensional drawing. By

dimensioning the slots and holes around the sleeve in degrees, the drawing can be applied

to any combination of diameter and wall-thickness sleeve. If the drawing were printed out

to scale it could be wrapped around the corresponding cylinder and the drawing would

represent the components of the sleeve.

.4 Slider

s

d

The sleeve CAD drawing

4

During the development of the LM, it was realized that the cable almost never hang

directly down the center of the sleeve. Instead, the mobile plate usually sways back an

 48

forth from the wind, or has some other undesirable movement or natural frequency,

which results in the cable moving around inside the sleeve. When the MPA is going

and the plug is about to go into the sleeve, the probability of the plug sliding into the

sleeve without guidance was not very good with previous prototypes. A component

called the slider was designed and incorporated to hold the cable concentric with the

center axis of the sleeve and guarantees the plug will begin sliding into the sleeve. Figur

4.10 is a CAD drawing showing the possible misalignment if the slider is not used, and

the guaranteed alignment when the slider is used. Figure 4.11 is a close-up picture of the

LM with and without the slider incorporated, showing the same possible miss-alignmen

as Figure 4.10.

up

e

t

 49

Figure 4.10, Slider Necessity Schematic

 50

Figure 4.11, Slider Necessity

The slider by itself is shown in Figure 4.12. When the plug is inside of the sleeve, the

slider rests atop of the plug and moves up and down with it. When the plug completely

exits the sleeve, lowering the detector to the ground, the slider waits at the bottom of the

sleeve for the plug to return. The slider’s vertical travel is limited by the two pins sticking

out the side of the slider. These pins slide along two slots, which almost go the total

length of the sleeve. Figure 4.6 shows the sleeve: the long slot visible is for one of the

slider’s pins, the other slots are for the control switch apparatus, which will be discussed

in later sections. The slots stop at the bottom of the sleeve in a location so the bottom of

 51

slider hangs just below the toggle bone. The slots continue high enough on the sleeve that

they do not impose on the limit switch-slider interaction to turn off the raising motion.

It is essential that the slider moves freely inside the sleeve with no possibility of

jamming. The slider must also have a low friction, tight clearance fit with the inner wall

of the sleeve, and also where the cable runs through the center of it. A 0.020" diametric

clearance fit was used between the slider and sleeve and between the slider and the cable.

The chamfer at the top of the plug (see Figure 4.2 or Figure 4.11) accommodates these

diametric clearance fits between the slider and the cable and sleeve by guiding the plug

into the sleeve even if it is still axially misaligned by about 1/4".

In order for the slider to work properly, and not wobble or become jammed inside the

sleeve’s contour when the MPA swings in the wind, it must always have part of its body

up inside the sleeve, above the contour. This length was experimentally determined to be

1" minimum. At the same time the slider must extend below contour’s apex and toggle

bone, to hold the cable’s fulcrum point stationary for the plug. If the contour is 4" tall and

the toggle bone hangs about 1" below the contour’s apex, the slider must be a minimum

of 6" long.

Figure 4.12, Slider

When the slider is near the w inches of the pulley. A

" counter bore, 5" deep, was drilled into the top of the slider to minimize the cable and

motor strain created by the misalignment that will often occur as a result of the cable

 top of the sleeve it comes within a fe

1

 52

rolling around the entire width of the pulley. Figure 4.13 shows how skewing betwee

cables position on the pulley and the center axis of the slider is compensated for inside

the 1" counter bore of the slider. An alternative to drilling out the top of the slider could

have been extending the length of the sleeve a few inches but would have increased the

total height of the LM, and resulted in the entire apparatus being heavier. The large dado

along the side of the slider was a machined feature to accommodate a potential concern

that never arose.

n the

e

slider will assure that the top of the plug is aligned to go into the sleeve. When the plug

slides back into the sleeve, it simply begins pushing the slider up into the sleeve.

4.5 Support Flange

The support flange keeps the sleeve walls from deflecting under loading. On previous

LMs the slots along the sleeve for the slider’s pins were not as long as on this LM and did

not affect the function of the sleeve. If the support flange is not used on this LM, the

sleeve walls will deflect and squeeze the slider and not allow it to move freely inside the

sleeve. It is essential f will fail during the

fting process if the plug gets jammed up inside the sleeve and is not at the bottom of the

Figure 4.13, Slider Counterbore

In summary, with the slider incorporated, the fulcrum point of the cable is lowered to the

bottom of the LM. Even if the plug and mobile plate are swaying from the wind, th

or the sleeve walls to stay rigid because the LM

li

 53

sleeve holding the cable in place when the plug is ready to slide inside the sleeve. Figure

4.14 shows the support flange.

Figure 4.14, Support Flange

.6 Plate Flanges

es are

e

eve, to connect each flange was rotated 45° from

4

The plate flanges connect the stationary and motor plates to the sleeve. The flang

identical. Each flange thickness is 5/8" to accommodate the three 1/4" tapped holes, which

connecting it to the motor and stationary plates. Figure 4.15 shows a flange connecting

the motor plate to the sleeve, and Figure 4.16 shows a flange connecting the stationary

plate to the sleeve. A four bolt-hole pattern (2 holes every 90°) was used to connect th

flange because the sleeve also needed to have slots every 90° for the slider and control

switches. The bolt-hole pattern on the sle

the slot pattern.

 54

Figure 4.15, Flange Connecting Motor Plate to Sleeve

Figure 4.16, Flange Connecting Stationary Plate to Sleeve

 4.7 Plates

The 1/2" thick aluminum plate was used so the thickness resists the bending as a result of

the plate being in the load path between the mass being lifted and the LM’s support

structure. The pockets we

re cut out to minimize weigh. The stylistic contours are

considered industrial design and not a direct input to functionality. They do, however,

minimize the weight of the component while providing unique connection points for

other components such as the final alignment cones.

 55

4.7.1 Motor Plate

The motor plate is used to mount the motor to the LM, and also functions as a place to

e

attach some of the rain shielding, which will be discussed later. The motor plate’s

asymmetrical geometry is designed to position the edge of the pulley’s drum, so the cabl

rolls off, and is somewhat aligned with the center axis of the sleeve.

 4.7.2 Stationary Plate

Figure 4.17, Motor Plate

The stationary plate has a single hole at the end of each arm to connect the LM to the

mobile truss or any other structure. A final alignment cone is connected to the midpoint

of each stationary plate arm. The hole-pattern in the center of the stationary plate allows

it to fit around the sleeve and connect to a flange.

 56

 4.7.3 Mobile Plate

Figure 4.18, Stationary Plate

The mobile plate is almost identical to the stationary plate. The only difference between

the two plates is the hole-pattern in the middle. The mobile plate uses its center hole-

pattern to connect to the plug. The mobile plate connects to its final alignment cones in

the same way as the stationary plate. The holes at the end of the arms of the mobile plate

are used to connect the tracks.

Figure 4.19, Mobile Plate

 57

4.8 Toggle Bone

The toggle bone was the capstone component to the LM’s design. It was manuf

and implemented last, and is what finally gave the LM its degree of 100% reliability.

When the plug is sliding into the sleeve there is a possibility of the plug’s free-spinning

ball bearing running into the apex of the sleeve’s contour. When this happened in

previous prototypes, the plug’s center axis skewed with the sleeve’s center axis and

jammed. Sometimes it would pop to one side or the other of the apex, but other times the

motor would just come to a stop. The more the DC motor slowed down the more it pulled

on the plug and the more jammed it becam

actured

e.

p apex but still

wasn’t 100% reliable. The friction and clearance between the plug and sleeve was still a

stronger influence than the two ball bearings “stacked” atop each other. The final attempt

was to make the fixed ball bearing a little bit. The concept was to

ave a design similar to three balls stacked on top of each other. The pivot of the toggle

one would be the first ball. The free-spinning ball bearing on the end of the toggle bone

Attempts were made on previous prototypes to divert the plug’s free-spinning ball

bearing around the apex of the sleeve’s contour. One attempt was to simply make the

apex a very sharp point, which surprisingly didn’t really improve things. A second

attempt was to rigidly fix a ball bearing in front of the apex. This fixed ball bearing

diverted the plug’s free-spinning ball bearing more often than the shar

 toggle back and forth

h

b

would represent the second ball. And the free-spinning ball bearing on the plug would

represent the third ball.

With the toggle bone in place, the combination of the plug’s free-spinning ball bearing,

toggle bone’s free-spinning ball bearing, and the two ball bearings at the toggle bone’s

pivot, the apex of the sleeve’s contour is no longer a problem. Figure 4.20 shows five

frames in the motion of an effective toggle bone.

 58

Figure 4.20, Toggle Bone Action

Frame A of Figure 4.20 shows the toggle bone hanging vertically like a pendulum at rest

and protecting the contour’s apex. The plug’s free-spinning ball bearing is moving

upward and headed directly at the toggle bone’s free-spinning ball bearing. In frame B

the plug’s free-spinning ball bearing has just run into the toggle bones free-spinning ball

bearing; the toggle bone ’s free-spinning ball

earing to continue traveling upward. In frame C the toggle bone has hit the right side of

e limit stop and can’t move any farther out of the way. The limited movement of the

r

 along

e contour away from the toggle bone and the toggle bone has fallen back to its vertical

e

gle bone toggles to one side or the other, it must stop and not completely expose

e apex to the plug’s free-spinning ball bearing. Figure 4.20 shows the path of the

plug’s free-spinning ball bearing to begin the primary alignment. Figure 4.21 shows

 “pops” out of the way and allows the plug

b

th

toggle bone is what keeps the toggle bone’s free-spinning ball bearing from ever

exposing the apex. In this case the plug’s free-spinning ball bearing was headed directly

at the apex, and pushed off against the toggle bone’s free-spinning ball bearing. Frame D

shows the plug’s free-spinning ball bearing after it pushed off against the toggle bone’s

free-spinning ball bearing. The plug’s free-spinning ball bearing will run into the contou

just above the apex. Frame E shows the plug’s free-spinning ball bearing rolling

th

position of protecting the apex.

For the toggle bone to function properly, the swinging motion must be constrained. Onc

the tog

th

 59

three frames of the limit stop; frame A is of the toggle bone hanging between the stop,

frame B is a side view of the stop, and frame C shows the stop’s fastener to the sleeve

revealed when the toggle bone is toggled to one side.

Figure 4.21, Limit Stop

.9 Final Alignment Cones

 the plug and sleeve, and also between the plug’s free-spinning

ball bearing and the slot in the sleeve that it rides along, is essential for a smooth

4

The clearance fits between

rotational alignment but also allows the MPA a few degrees of rotation after it is aligned.

This rotation will result in a slight jog between the MPA tracks and the tracks extending

across the freeway.

The final alignment cones are used to rotationally and vertically secure the MPA so it

doesn’t wobble when the trolley drives on and off of it. The ends of the mobile and

stationary final alignment cones are both chamfered at 45° and big enough in diameter so

they can engage to perform the last little bit of rotational alignment.

 60

Figure 4.22, Final Alignment Cones

The cones are made of Delr lating the power

ansmission components housed inside of them. The spring and washer of the power

in frame B of Figure 4.22 , which transmits the 12 volts to

s

a

 found.

in for the purpose of electrically iso

tr

transmission assembly shown

the MPA to power the trolley, are discussed in section 5.3

4.10 Stabilization Spring

Another type of misalignment can happen when the trolley drives on and off the MPA a

it is illustrated doing in Figure 4.23. As the trolley wheels near the edge of the MPA

tracks, its center of mass (plus the weight of the detector) shifts from directly beneath the

plug, and the MPA tracks drop down (over ½" with a 70lbf load). This offset creates an

obstacle the trolley must drive up in order to get onto the tracks extending across the

freeway. The trolley was having trouble getting up this gap with its 2" diameter tires so

solution needed to be

 61

Figure 4.23, Stabilization Spring Necessity

 62

This misalignment occurred for three reasons: the necessary, but small clearance fit

ause

ion of the plug and mobile plate was undesirable because the ideas brainstormed

increased the LM’s height and number of parts significantly. The stabilization spring was

has since become an essential component of

ey,

nal alignment cylinders, the

abilization spring is used to keep the LM tracks stable when the trolley drives on and

imit switch (electrical components are discussed in section 5) is

triggered, an auxiliary power circuit keeps the motor on for an additional 1 second, and

Now, when the trolley drives on and off the MPA, the MPA tracks will not rock because

a pre-load has been placed between the stationary and mobile final alignment cones.

A section view of the stabilization spring inside the plug is shown in Figure 4.24, and a

picture of the stabilization spring sticking partially out of the plug is Figure 4.25.

between the plug and sleeve, the moment applied to the connection between the mobile

plate and plug, and the lack of vertical stability from the final alignment cones. Bec

the manufacturing process of turning down the outside of the plug with more precision

than was done would require special machine shop tooling, making the gap between the

plug and sleeve tighter was not feasible. Adding additional triangulation to support the

connect

introduced as a solution to this problem, and

the LM.

The spring has been placed in the load path between the hanging mass (ABDS, troll

and MPA) and the cable. In conjunction with the fi

st

off them. After the l

pulls the final alignment cones together tightly by compressing the stabilization spring.

Figure 4.24, Stabilization Spring Section View

 63

Figure 4.25, Stabilization Spring With Plug and Cable

In addition to the stabilization spring’s ability to stabilize the MPA, it also absorbs the

impact when the plug’s free-spinning ball bearing runs into the sleeve’s contour. When

the plug begins sliding into the sleeve, any rotational momentum of the ABDS-trolley

package disappears within a few inches of insertion. The only motion left until the plug’s

free-spinning ball bearing runs into the sleeve’s contour, will be purely vertical. When

the plug’s free-spinning ball bearing does run into the sleeve’s contour, it takes time for

the 70lbf of trolley and ABDS to change angular momentum. During this moment, the

motor puts a lot of tension in the cable because it still wants to pull the plug directly

upward, but the plug has to begin to rotate as its free-spinning ball bearing begins to track

along the sleeve’s contour. The stabilization spring has been specified so it will compress

left in the stabilization spring temporarily postpones the motor’s relentless task of pulling

the plug upwards at a constant rate. As the motor pulls the cable up at the same speed, the

spring compresses, and creates a window of time for the MPA to rotate. As soon as the

MPA begins to rotate, the spring will then uncompress to its length before and be ready

for the next collision.

In summary, the LM will work without the stabilization spring but not nearly as

gracefully or precisely. The LM works much smoother and will have prolonged life with

the stabilization spring incorporated because lighter loading will be transmitted to the

motor, and throughout the entire apparatus, when the plug’s free-spinning ball bearing

pushes off against the sleeve’s contour. With the spring in place the delay circuit can

more precisely control the final tension in the cable after the MPA docks and the final

alignment cylinders compress together.

 64

 4.11 Trolley Stop

When the plug slides into the s e as vertical as possible. If

e plug is skewed from the vertical axis, a lot of additional friction between the inside

walls of t

lignmen would

sult in a catastrophic failure of the LM’s operation.

ted according to the loading of the trolley

stop and the holes for adjustment along the

pushed against the pre-adjusted trolley stop,

d be located directly under the plug, which

leeve it is important for it to b

th

he sleeve and outside wall of the plug will make for a rough rotational

t. Even worse, the top of the plug may jam on the sleeve’s contour, whicha

re

A part called the trolley stop was created to make sure the mass of the trolley and ABDS

is centered underneath the center axis of the plug. A number of holes have been drilled in

the mobile track so the trolley stop can be adjus

and detector. Figure 4.26 shows the trolley

track. When the trolley is on the MPA, and

its center of mass (trolley and detector) shoul

will result in a vertical plug. The trolley stop also keeps the trolley from running right off

the track and falling to the ground when it drives onto the MPA.

Figure 4.26, Trolley Stop.

 65

4.12 C-Channel Insulating Bushings

The C-channel trolley track must be electrically isolated because it is energized with 12

volts, which is the trolley’s power source. To isolate the short section of trolley track on

the LM, white Delrin isolators were placed at each connection point of the track and the

mobile plate. Each isolator consists of two custom-made Delrin parts; a bossed washer,

and a mating flat washer as shown in frame A of Figure 4.27.

Figure 4.27, Trolley Track Insulating Bushings

The Delrin washer sits between the trolley track and mobile plate. The bossed Delrin

e trolley track, and also through the Delrin

mpletely isolate the trolley track. When the mounting screw is used to attach

way for the screw to short out the isolated

ieces because of the way the two Delrin washers isolate the C-channel.

washer then slides through the hole in th

washer to co

the C-channel to the mobile plate there is no

track p

When the LM is mounted to the overhead structure for operating, its short section of track

must be adjusted for perfect alignment with the tracks extending across the highway so

the trolley can drive on and off with a smooth transition. Frame B shows a 10-32 SAE

machine screw inserted through the Delrin isolator and the trolley track connecting it to

the mobile plate. The holes Delrin bossed washers are oversized compared to the size of

the machine screw to enable the fine-tuning of the alignment between the mobile and

stationary track.

 66

 4.13 Pulley-Drum Cover

When IEL staff other than the designer used the LM, they did not know tension needed

be kept on the cable to keep it from unwinding and becoming tangled around the pulley

and motor shaft. Unlike a nylon rope, which is very flexible and will stay wrapped

around a pulley drum without being held in position, a steel stranded cable does not

naturally stay in a bent position around a pulley drum; it will tend to try and spring back

into a straight position resulting in a tangled rat’s nest of cable. When IEL staff were

loading and unloading the trolley, they would sometimes hold onto the MPA or placed it

on a cart, which supported its w

to

eight instead of letting it continue to dangle, which kept

the tension in the cable. A cover was heat-formed from ABS plastic and wrapped around

the cable and pulley drum. Frame the cover off the LM. Frame A

ows the cover installed. When the cable is slacked from below, the cover will hold it in

 B of Figure 4.28 shows

sh

place around the drum and the possibility of it becoming loose and tangled was

eliminated.

Figure 4.28, Pulley-Drum Cover

 67

CHAPTER 5

ELECTRICAL COMPONENTS OF
THE LIFTING MECHANISM

e

the

h

 the motor to a lower voltage power source. This

condary voltage needs to be available because the speed during rotational alignment

w

5.1 Speed Control Switch

The speed switch changes the speed at which the motor raises the mobile plate. After th

plug runs into the bottom of the slider it begins to push the slider up, into the inside of

sleeve. The slider moves up about 1/2" and triggers the speed switch. The speed switc

triggers a relay, which, in turn, switches

se

typically needs to be much slower, especially when lifting the ABDS-trolley package.

The slower the ABDS-trolley package is pulled up during the rotational alignment, the

gentler the LM turns the ABDS-trolley package. The speed switch is located just belo

the stationary plate and is shown in Figure 5.1.

Figure 5.1, Speed Control Switch

 68

Frame A of Figure 5.1 shows the inside view of the slot and the switch lever extending

through the slot. Frame B and C are two views of the switch and ABS bracket

ismounted from the sleeve. Frame D shows the outside view of the slot in frame A.

ay

 pass

omentarily during the alignment phase.

Limit Switch

W en inal

alignm y

c ui it to the

m or of the switch

r ov

d

Frame E illustrates the switch installed with wire connected to it. The geometry of the

lever arm is essential for proper operation. The arm was custom bent to have a 1" flat

spot, which the slider and plug make contact with. The flat spot enables the switch to st

triggered when the adjacent chamfers at the bottom of the slider and top of the plug

by. If the contact point was a roller or just the end of the lever the motor would speed up

m

h the mobile final alignment cones are 1/8" from mating to the stationary f

ent cones, the slider triggers the limit switch. The limit switch tells the dela

irc t to turn off the relay after a preset amount of time, which opens the circu

ot . Figure 5.2 shows three frames of the limit switch. Frame A is

em ed from the sleeve, frames B and C are of the switch installed.

Figure 5.2, Limit Switch

The limit switch is mounted to the top of the sleeve with an ABS bracket just below the

motor plate flange. Its actuation lever is positioned to be triggered by the slider about 1/8"

before the final alignment cones mate and th Positioning the

limit switch to trigger 1/8" before the mobile plate docks ensures the trigger will occur

before all movement stops cut it close” because the

e mobile plate stops moving.

. In other words, there is no reason to “

 69

auxiliary power circuit will keep the motor on until the final alignment cones contact and

compress the stabilization spring 1/2" after the mobile plate docks.

5.3 Power Transmission Spring Assembly

When the mobile plate is docked power must be transmitted from the stationary plate to

the mobile plate because the trolley requires power from the aluminum c-channel tracks

to move. The power transmission and final alignment components were combined in the

deployable LMs to create a final product with fewer parts and simplify the LM

esthetically. Figure 5.3 shows the power transmission components and the final

alignment cones they are mounted to.

Figure 5.3, Power Transmission Spring Assembly

Frame A displays a stationary alignment cone and the spring assembly. The machine

screw on the right side or frame A passes through all the components in the order they are

shown and connects to the wire. The wire is pushed into the hole drilled in the end of the

machine screw and the two components are soldered together, as shown in frame D. The

machine screw, with the wire soldered onto its end, is then threaded into the stationary

final alignment cone. The final assembly is shown in frame B, minus the wire.

 70

The mobile power transmissio esign and shown in frame C

f Figure 5.3. Only a single fla needed for this assembly.

The two ure

4.22.

ange

edundant power transmission. Frame A of Figure 4.22 shows

e four sets of final alignment cones and Frame B displays a close up of the exposed

 components. The power transmission components were incorporated

to the final alignment cones to simplify the design by minimizing the number of parts.

/4", and put additional tension in the

cable. This method still works well for the camera LM because it lifts less than 20lbf.

never got stuck rolling off the LMs tracks, the / " vertical shift was concerning and

n components are of a similar d

t and compression washer are o

 finished assemblies are shown as they are about to mate in frame B of Fig

The length of the final alignment cones (at least 7") was chosen for two reasons. First, the

distance from the sleeve’s apex to above the entire contour, where the static plate’s fl

can be mounted to the sleeve is about 7". Second, there needs to be room in between the

stationary plate and the mobile plate for the toggle bone and speed switch.

The final alignment cones also house the springs for power transmission. The mobile

final alignment cones have the corresponding metallic contacts exposed; they make

contact with the springs. There are four sets of alignment cones, only two are currently

used for power transmission (+12V and ground). The remaining two could also be used,

and the LM would have r

th

power transmission

in

5.4 Delay Circuit

The need for a delay circuit originated because the weight lifted by the ABDS-trolley LM

is 70lbf. When less weight was lifted and the motor turned off, the armature and gears had

enough momentum to wind up the cable another 1

When the ABDS-trolley package rolls on or off the LMs tracks and no delay is used, the

moving weight shifts the mobile tracks alignment up to 1/2". Even though the trolley
1

2

warranted the inclusion of a delay circuit. The delay circuit is shown in Figure 5.4 and the

schematic is contained in Appendix IX.

 71

Figure 5.4, Delay Circuit and Relay

5.5 Motor

Five criteria were considered when choosing the LM’s motor. They are the torque

capability, overhung load rating, output shaft speed, gearbox design, power source, and

the brand and distributor. The motor sourced was a compromise of all these criteria. Ideal

speed and torque were compromised for weight and price. Two views of the motor are in

Figure 5.5. The camera LM and ABDS-trolley LM motors may be indistinguishable from

the outside; their difference is the gear ratio inside the gear box.

Figure 5.5, AC-DC Electric Gear Motor

 72

5.5.1 Torque Capability

The LM is designed to lift the trolley and ABDS along with its own mobile plate, track

and plug. The current trolley weight is 25

s,

lbf

to have

ue to lift the trolley and ABDS. The largest amount of torque is needed after

e mobile plate docks and the stabilization spring is compressed. The stabilization spring
lbf/in and is compressed about 1/2" before the time delay circuit turns

ff; this adds an additional 45lbf of load to the motor in addition to the 75lbf being lifted

hen the motor stops with a full load attached to the mobile plate, whether the mobile

the air, or near the ground being unloaded or loaded, it is

ndesirable for the motor to unwind. The 1787:1 gear ratio, gear inertia, and worm drive

The speed the ABDS-trolley package is lifted when the initial alignment takes place

needs to be as slow as slower the mobile

lbf, the current ABDS weight is 40lbf, and the

mobile plate with plug, track, and alignment cones weighs 10 . To lift this total weight

of 75lbf on a 2" diameter pulley the motor needs to have at least 75in-lbf of torque. When

the motor is slowed down for the angular alignment process, the motor still needs

enough torq

th

has a spring rate is 85

o

for a total of 120lbf.

5.5.2 Gearbox Design

W

plate is docked, dangling in

u

design allows the motor to move the mobile plate and ABDS-trolley package, but the

weight of all these hanging components can not move the motor. If the combination of

the total overhung load and radius to the point the cable rolls off the pulley barrel has

enough torque to overcome the gear-motor, the lifted load will return to the ground when

the motor turns off.

The worm-drive gearbox was chosen to ensure that the lifted weight can not unwind the

pulley cable when the motor stops. An important consideration is the amount of torque

that can be applied to the output shaft before the motor’s armature moves and the pulley

unwinds. The motor was tested beyond its overhung rated values and typical loading by

hanging 200lbf on the mobile plate. The motor was able to pull up the 200lbf and the

pulley cable did not unwind when the motor was turned off.

5.5.3 Output Shaft Speed

possible. Previous LM prototypes showed the

 73

plate is lifted the less jolting applied to the ABDS-trolley package. A gear motor in the

L was tested on the Second ABS prototype. This motor had a 1/20 HP, 13 RPM output

ge was turned down,

late.

lbf. This means that the motor is designed to have

t (Grainger, 1999). For this design, the

e cable. Attaching the pulley directly to

ed

r the

ng motor terminology and sourcing the correct motor (Grainger,

999).

Source

C reasons. The first being that the prototype was in

e early design stages and the power source used during testing or on the highway is

n in

e

IE

shaft speed, which was too fast for the final alignment. If the volta

the motor did not have enough torque and control to align the fully loaded mobile p

Therefore, the output shaft speed of the deployable LM motor is 1/3 of the motor used on

the Second ABS prototype.

5.5.4 Overhung Load Rating

The motor’s rated overhung load is 100

up to 100lbf pushing on the side of the output shaf

overhung load would be the weight hanging on th

the motor’s shaft simplifies this prototype from previous designs because it eliminates the

need for additional bearings, bearing blocks, a shaft, and shaft coupling between the

motor shaft and pulley shaft.

5.5.5 Brand and Distributor

The Dayton brand motor was chosen because it is a popular, well-known brand, which

can easily be sourced through Grainger. Replacement parts are also easily sourc

through the Dayton motor parts toll-free telephone number. See the company list fo

motor and motor parts replacement information. Grainger’s motor selection guide was

used for understandi

1

5.5.6 Power

An A -DC motor was chosen for two

th

subject to change. The second reason is that the control components are also in the

development stage and may be subject to change.

5.6 Wiring

The LM has a box mounted to the underside of the motor plate. The cover show

frame B of Figure 5.6 can be removed by unscrewing two machine screws to expose th

 74

delay circuit and motor relay. The delay circuit and motor relay pivot out of the way to

expose the junction strip for all wires connecting to the LM and run to the switches and

motor. The circuit and junction strip are shown in frame C. The control switch for

moving

up and down is mounted to the front panel of the control box shown in frame D.

Frame A shows the +12V power lead bolted to the LM’s +12V trolley track. The trolley

gets its power directly from the energized track; the track is insulated at its mounting

locations.

Figure 5.6, Electrical Circuit and Control Box

The control box shown in frame D of Figure 5.6 has two power plugs that can be used for

two power sources. One plug has 120V AC written on it. This is the power used to move

the mobile plate at full speed. Another plug has “VAR AC” written on it to indicate it

should be plugged into a variable AC power supply. The speed switch toggles a relay to

supply the motor with the variable power source when the alignment is taking place. The

schematic for the wiring of the LM and control box is in Appendix IX.

 75

CHAPTER 6

ENVIRONMENTAL FACTORS

The deployable trolley LM is suitable for initial outside use by Caltrans because it is

o

1

ry cycle. The weight

fted during this testing was a collection of steel and aluminum billets and plates

made of materials that have performed reliably in direct sun, rain, and both cold and

warm temperatures. The trolley LM has been subjected to endurance testing during

Sacramento’s summer and winter seasons.

6.1 Summer Endurance Testing

In the summer, the LM was cycled continuously, over 100 cycles in direct sun and n

wind, which could have allowed for forced convection cooling of the motor. The East

Sacramento testing location ambient air temperature in the shade on September 6, 2004

was over 100 °F. The LM successfully completed every cycle impeccably in the four

hour test; each cycle took almost 2- /2 minutes. Figure 6.1 illustrates the setup used; the

fan spun the mobile plate before it rose back up and docked eve

li

weighing 105lbf.

 76

Figure 6.1, Summer Endurance Testing Setup

6.2 Winter Endurance Testing

The LM has been set up in a similar manner to the setup shown in Figure 6.1 and

exposed to winter weather for over two consecutive months. It was setup in a damp,

aded testing location for the months of October, November, and part of December

2004. The LM was subject to fog, rain, and freezing temperature conditions.

Approximately 10 different dates in that time period the LM was cycled a few times to

check for proper operation; it performed flawlessly. Rain proof shielding was on the LM

the entire time it was sitting outside during the winter months.

ABS shielding can be installed or removed in about two minutes. Frame A of Figure 6.2

shows the shielding removed from the LM. The sleeve of the LM is covered with two

pieces of 4" diameter ABS pipe. Each piece of pipe has been cut along its length to a little

sh

 77

more than half; the two pieces pushed together look like a figure 8 from above. Each pipe

piece is anchored with a machine screw to the motor plate and stationary plate flanges.

The motor and pulley are covered with 1/8" ABS sheet. One piece of ABS sheet was heat

formed to match the motor plate’s edge contour. Then another piece was glued to the top

as a lid. This cover is attached to the motor plate’s edge at three points. The speed control

switch has a piece of 3" ABS pipe cut as an enclosure. It is attached with one machine

screw through the stationary plate and can be seen in frame C. Frame B shows the LM

covered up but still dry, frame D shows the rain shielding being rigorously tested with the

horizontal spray from a hose.

the

Figure 6.2, Rain Shielding

In addition to the ABS shielding, the speed control and limit switches were rain proofed.

This was done by removing the lever arm pin, lever arm, and plunger of each switch. By

coating the plungers sides and flange with grease and then putting it back into its slot,

only access rain water has to the switch inner components has been eliminated.

 78

CHAPTER 7

CAMERA LIFTING MECHANISM

The camera LM was created as a bonus to the research technical agreement with

Caltrans. This LM has all the features and even uses many identical parts to the ABDS-

trolley LM. Some parts were made smaller because the mass being lifted is considerably

less. The stationary and mobile plate geometries were changed for mounting a specific

camera box specified by Caltrans. The camera box is asymmetrically loaded with the

camera components inside so a cu made to position the box’s

enter-of-mass directly under the plug.

o

is

 when the

tational alignment takes place; the distance the plug needs to be into the sleeve before

out) the rotational

ertia of the motor armature and gears in the gear box continue to pull the camera up

about 1/2" as they slow down. The final alignment cones bottom out and the stabilization

stom mobile plate was

c

It was possible to make the plug and sleeve lengths shorter because less mass needed t

be aligned and there are no trolley tracks to align vertically with. The mass being lifted

weighs less than 20lbf, compared to the ABDS-trolley LM requirement of 75lbf. Th

decrease in inertia means smaller forces are applied to the sleeve and plug

ro

rotational alignment begins does not need to be as long. The plug length was also made

shorter. The slider length did not change because it depends on the contour height and

toggle bone, which did not change.

The same Dayton motor is used, but the gear ratio of the gear box was much less.

Because the camera mass is significantly smaller, it can be lifted faster for the same

power input, and has less inertial forces on the LM during rotational alignment. The time

delay circuit was omitted from the camera LM design. When the limit switch cuts the

power to the motor (about 1/8" before the final alignment cones bottom

in

 79

spring compresses slightly by the time the armature is out of rotational energy and has

e custom

stopped spinning.

Frame A of Figure 7.1 shows the camera LM. Frame B is a close-up view of th

mobile plate to mount the asymmetrically loaded camera box. CAD drawings for the

camera LM are in Appendix II. The stabilization spring is significantly smaller for the

camera LM because it is lifting less than 20lbf. The spring is shown along side the

Deployable ABDS-Trolley LM spring in Figure 7.2.

Table 7.1, Camera Lifting Mechanism Criteria

1 Lift 16-pound, asymmetrically weighted aluminum camera box.
2 The docked camera will need power transmitted to it through the LM.
3 User controls the LM from the ground near its mounted operating location.
4 Heat sinks will be located on the top and on one side of the camera box.
5 The camera should not vibrate or move around when docked.
6 From a user’s point of view, quick lifting and lowering is best.
7 The aluminum camera box can bounce off the light pole during vertical travel.

Figure 7.1, Camera Lifting Mechanism

 80

Figure 7.2, Stabilization Spring Comparison

 81

CHAPTER 8

SUGGESTIONS FOR FUTURE WORK

al

nomical unless it’s for marketability within Caltrans or

ass manufacturing. Refinements can always be made to a design. Here are a few items

worth mentioning if this apparatus is reproduced in larger quantities or if future changes

are made to the design.

as a

ips

ents

The deployable ABDS-trolley LM has shown a degree of 100% reliability for more than

two hundred cycles. Different paths could be followed to further develop the LM. A

suggestion would be to optimize for cost, weight, and size. Reliability from a statistic

and mathematical perspective could also be addressed. Another prototype could then be

built or maybe a short run (5 or 10) if Caltrans wants to deploy ABDS-trolley packages at

different locations. Since functionality is already achieved, the amount of time spent

improving the LM may not be eco

m

8.1 Clutch

One of the biggest concerns with the LM is making sure the motor shuts off at the proper

time. The Second ABS Prototype was the first prototype to incorporate a motor and

automatic shut-off using a micro-switch. The latest prototype also uses a micro-switch,

but the micro-switch is connected to an electronic delay circuit with a relay that interrupts

the power to the motor after a short period of time. The delay is adjustable between

fractions of up to a couple seconds.

The clutch was designed early on in the creation of the deployable ABDS-trolley LM

safety feature if the micro-switch doesn’t trigger. Its purpose was to slip if the plug

becomes jammed or stops moving before the limit switch is triggered. The clutch’s

design was conceptually flawed for the hanging mass LM application. If the clutch sl

one “notch” it rotates 30° before re-engaging. The mobile plate and other compon

 82

attached to it fall about 1/2" before the clutch reengages. This is enough distance for th

ABDS and trolley to gain the momentum to overcome the clutch’s ability to reengage and

hold up the hanging mass. The package will fall to the ground. Figure 8.1 shows five

frames of the clutch assembly.

e

to the motor’s shaft

a the eight 4-40 SAE holes on the 1-1/2" bolt-hole

circle. The pulley drum and walls, which are rigidly connected together, are shown in

frame C. The pulley is connected directly to the cable holding up the ABDS-trolley

package. The pulley is also connected indirectly to the motor shaft through the

Figure 8.1, Clutch Assembly

The entire clutch assembly is shown in frame D of Figure 8.1. The spring loaded

clutching component is shown in frames A and B; each counter-bore holds a spring and

over half the bearing’s length. This component is rigidly connected

through the component in frame D vi

 83

compressive forces from the springs pushing the steel bearings into the recesses. This is

where the slipping occurs, between the flat, circular surface shown in frame B and the

side of the pulley wall in frame C. Each bearing is spring loaded and each spring’s force

on the ball bearing is variable by adjusting the corresponding 1/4-20 SAE socket head cap

screw to that counter-bore. Two counter-bores in the clutch were left empty and without

set screws because only 10 springs came in a package and only one package was

purchased.

8.2 Limit Switch

The reliability of the limit switch could be statistically evaluated. Joe Palen suggested

replacing the switch with an o also be applied to the speed

tical sensor with part number QRB1134.

sn’t chatter and no dampening

ows the slot cut into the slider. Frame B

he

ptical sensor. This theory could

switch. Fairchild Electronics makes an op

8.3 Sleeve Friction

The amount of friction the sleeve puts on the plug can be increased if desired. Experience

with previous LM prototypes warranted a concern when the plug’s free-spinning ball

bearing chatters back and forth in the contour’s transition curve, right before it reached

the 0.502" wide slot. It was a concern that the LM would see very high stresses compared

to the rest of the alignment process. Because the ABDS-trolley package is moving so

slowly when the plug aligns, and because the transition contour between the contour and

slot is more gradual than past LM sleeves, the bearing doe

friction was needed. Frame A of Figure 8.2 sh

shows the slot cut into the sleeve behind the supporting flange. This slot cut out of t

sleeve is for access to the plug from a frictional dampening device. The device was never

created because the need never arose on this particular LM. The slot cut out of the plug is

so the friction device doesn’t affect the slider. If the plug ever experiences angular

momentum at this point, additional friction can be added in this manner.

 84

e

mpere rating.

8.5 Test Lifting Mechanism to Failure

Some endurance testing has been done with the current deployable LMs, but more should

be done before any sort of a next prototype is built. Contaminating the sleeve, plug, and

slider with dirt to simulate years of dust and wind is recommended. Adding more weight

until the LM can’t lift it any more, either because the cable breaks or motor is stresses is

also essential. Disconnect the LM speed switch and let it run too fast would be a good test

until failure occurs. Disconnecting the limit switch and let the motor and cable

connection points self destruct would also be a good test. Testing in more extreme

weather would also be a good idea. The LM is at the stage right now to begin this type of

destructive testing.

Figure 8.2, Additional Friction on PLug from Sleeve

8.4 Power Transmission Through Final Alignment Cones

The first attempt at power transmission through the final alignment cones worked

perfectly, but the system has many parts and is complicated. A simpler way to hold th

spring inside the cone and transmitting power through it could be found. The power

transmission components should also be tested to failure with electricity and given and

A

 85

8.6 Mobile Truss Components

The mobile truss is more of a tool and not the final product. However, a couple things

could be done to improve its abilities. If all th wood were replaced with a material that is

rain proof, the truss could be used ould include the fishplates and

e isolating plywood between the C-channel and the ladder sections. Be careful,

e

 more diversely. This w

th

however, wood can be surprisingly strong and is actually quite suitable for this

application. Anther material, such as aluminum may be more work than it is worth to

make a replacement. Testing over Old Hutchison Road is limited in height by the high-

voltage power lines over the road’s north shoulder. Finding another approved location

and preparing it, if necessary, for testing would allow for more diverse testing of the

ABDS.

 86

CHAPTER 9

THE TROLLEY

Project Scope

The universal mounting platform, herein referred to as the trolley, was developed as a

flexible and mobile device for a variety of traffic detection systems that are to be placed

directly over the lanes of a freeway. Encompassed in this project are the trolley, a set of

tracks that are to be mounted to existing trusses that span freeways, and a lifting

mechanism to hoist the trolley and detector to the required height. This system enables

operators on the ground at the roadside to have easy access to the detectors and the ability

to position them over a specific part of the road. The original design was created to

accommodate the Laser-Based Detection System (LBDS) designed and constructed at

UC Davis. In order to allow field testing of the trolley, lift, and LBDS, a mobile truss was

built that allows the entire system to be positioned at a working height. The mobile truss

is large enough to span a two lane road. Field tests included driving vehicles underneath

e truss so real world data could be collected for the detector.

ism

;

r

tor

t of

ith battery backups. The

th

The primary focus of this chapter will be on the trolley and tracks. The lifting mechan

and mobile truss were detailed exhaustively in previous chapters. The trolley has six

major subsystems: a platform; drive system; alignment wheels; brakes; power delivery

and control system. The trolley platform consists of a flat plate that all the trolley’s

components connect to and a mounting plate that acts as an adapter between the detecto

and the body. The drive system has two axles, a motor, gearbox, and wheels. The mo

drives the rear axle, while the front axle is left idle. Alignment wheels keep the trolley

moving straight and prevent rubbing against the tracks. Brakes are located at the fron

the trolley and are meant to prevent accidental movement due to wind. Power consists of

a DC current fed through conductive strips fixed to the tracks w

 87

control system uses onboard electronics to run the motors, read any sensors, and

communicate to a controlling program run by the operator.

9.2 Original prototype

The original prototype was single plate with wheels, a drive system, and brakes. The

brakes were a pair of linear actuators placed under the wheels that squeezed the trac

between itself and the wheels. A control system was later added to allow the trolley to be

operated remotely. This was comprised mostly of custom built circuits driven by a PIC

microcontroller and sent signal with a small RF transmitter. The system worked as

required, but many problems existed. The electronics were only hand etched boar

didn’t use many commercial chips, and were much larger than necessary. In addition the

brakes were actuated with a separate control board requiring a lot of extra space. T

remote used had too limited a range. The brakes were und

ks

ds,

he

erpowered and often got stuck

 the locked position requiring a person to pry them loose. Because of the space required

for the brakes, the trolley’s main platform rested over 4 inches below the bottom of the

tracks. This meant that any detector mounted on the bottom of the trolley was closer than

ecessary to the traffic below and reduced the safety clearance at any given location. The

height of the trolley also created problems in the drive system which required the use of

flexible shaft couplings. Initially small plastic hemispheres were attached to the end of

each axle to reduce friction with the tracks when the trolley veered to one side. With the

additional weight of the detector, the friction increased enough to stall the drive motor.

As seen in the following sections, many of these issues were fixed with the design the

current trolley prototype.

in

n

 88

Figure 9.1: Original prototype

Figure 9.2: Early control system

9.3 Trolley Platform

At its heart, the trolley is simply a large metal plate with wheels, running inside two

pieces of C-channel. The material used for the majority of the pieces is aluminum

because it is lightweight and corrosion resistant. The body is a rectangular plate of 0.25

inch aluminum drilled with all the necessary mounting holes. The detector, instead of

mounting directly to the body, is attached to an individually made mounting plate which

 89

is also made out of 0.25 inch aluminum plate and bolted underneath the trolley. This

accomplished two goals. First the mounting points on the trolley body are four fixed bo

holes making it a universal platform. Any special mounting requirements for a detecto

can be taken care of with the mounting plate. With each detector, a custom mounting

plate becomes its adaptor. Secondly, the location of the center of mass of the combined

trolley, detector, and lift platform is important during lift operation. If the lift platform is

tilted too severely when it engages the upper part of the lift, this can create a failure m

by putting extra strain on

lt

r

ode

 the lift cable. The combination of the fixed holes on the trolley

ody and the mounting plate allows the centers of mass to be correctly aligned without b

repeated measurement.

Figure 9.3: Current trolley

The entire device rolls inside the tracks, which are comprised of 3 x 2 x 0.125 inch

an easy shape for mounting onto trusses and

encloses the trolley. The only way that the tro can fall is if the tracks break or the

trolley rolls off the end. One end y the lift which has an

tegrated stop and the other end has bolts that pass through each track.

One major improvement to the trolley was the ability to lower the profile to 3 inches so

that it fit within the track height. This reduces the distance that any attached detector

aluminum c-channel. This provides both

lley

 of the tracks is covered b

in

 90

would encroach into the safety clearance between the truss and vehicles to its minimum.

rofile: The

rive system was lowered; The alignment wheels were redesigned; The brake design was

cs

By not sticking down into traffic any further than necessary, more locations for

deployment are possible or more space is available for the detector in the vertical

direction. Many changes were made that enable the trolley to attain a low p

d

completely changed; The brushes and brush arms were reconfigured; The electroni

were reduced in size. The changes are detailed in subsequent sections.

Figure 9.4: Low trolley profile

9.4 Drive System

The drive system for the trolley consists of a geared DC motor, a 1:1 right angle gearbox,

and neoprene wheels with aluminum hubs. The motor is capable of 480 in-oz

continuously and no further gearing seems necessary even with the full weight of the

detector and trolley. The axles for the trolley are a hardened 440C stainless steel to keep

some corrosion resistance but add strength to this critical component. The neoprene

wheel are pliable enough to provide the necessary traction and have good weather

resistance. The area where traction is needed most is at the junction of the lift tracks to

the main tracks. Even when fully docked there is some give in the lift platform and the

trolley needs enough traction of climb a vertical transition of approximately 0.25 inches.

Part of reducing the height of the trolley was mounting the drive system closer to the

body making all the supports much shorter. While creating these pieces, the alignment

was improved enough to allow the use of rigid, stainless steel shaft couplers. Since one

previous flexible couplers had failed during testing, this improvement to the drive system

eliminated a previous problem.

 91

Figure 9.5: Drive system

9.5 Alignment Wheels

The first iteration of the trolley used hemispherical delrin caps at the end of each axle to

reduce the friction if the trolley didn’t roll straight and the wheels started to rub on the

inside face of the tracks. When the trolley was tested on its own, this worked as desig

allowing the trolley to continue to run even if it was not going straight. Once the detector

was attached to the bottom of the trolley, the resulting friction from the wheels and caps

ned

was enough to stall the trolley. The solution was a set of

nd

due to the increased weight

alignment wheels similar to those used on a roller coaster. A roller bearing was

positioned near each wheel, spaced so that if the trolley drifted to one side of the tracks

these alignment wheels would make contact first and roll along the inside wall. These

worked well, but there were a couple issues with the original design. The bearings were

metal requiring a plastic sleeve inside to prevent a short, and they were mounted to the

same supports as the axles which became too short to accommodate them. The current

design of the alignment wheel moves them to their own supports and utilizes delrin

bearings so that the electricity in the tracks is not an issue. The alignment wheels exte

past the main wheels by approximately 0.125 inch on each side.

 92

Figure 9.6: First alignment wheels

Figure 9.7: Current alignment wheels

9.6 Brakes

The most difficult system to design on the trolley was the brakes. The trolley doesn’t

need any sort of dynamic brakes because it moves quite slowly. The brakes serve as a

parking brake, keeping the trolley from moving inadvertently while on the lift or above

the roadway. Originally the brakes were linear actuators driven by a stock circuit board.

They provided a decent amount of braking force, but had some problems. Aside from the

 93

required circuit board being too large, the actuators would get stuck when set (i.e. t

brakes are on), necessitated the added height to the trolley that was undesirable, and

relied on the current running through the bottom face of the tracks. Getting stuck was an

especially troubling problem because it would require someone to climb up to the unit o

the truss. Using the electricity in the tracks needed to change because the power delivery

system was also being modified.

he

n

Figure 9.8: Original brakes

Through the experiences with the original brakes, goals were specified during the design

phase of the current trolley. First was to reduce the vertical space requirement. This

would allow the main part of the trolley to fit within the 3 inch track height even if parts

of the brakes hung below the tracks. The idea is to get the detector as close to the tracks

as possible. Another very important goal was increased reliability (i.e. don’t get stuck).

Being stuck requires a person to climb over the roadway, negating one of the main safety

advantages of the trolley system s on the wheels, axles, and

earings. Because the trolley hangs above a road, failures can have severe consequences.

he first brake design pushed against the bottom of the track and used the wheel to

ueeze the track in-between. The best case would be an independent brake that only

stressed itself when squeezing the tracks and didn’t add any stress to the weight bearing

parts of the trolley. To keep everything on the lift platform in the event that it swung

. Next was to eliminate stres

b

T

sq

 94

severely while going up or down, the brakes would need to provide enough force to

necessa

dedicated controller board for the brake m

provide lley

betwee the

t

due to its shifting weight, and it does have some extra space horizontally.

t

expand

stay on or off and generally lacked the force we were looking for. Several other concepts

ull brake.

ilar to that

of a lin he track and

Since b ble would

was

used be insure

that the his was coupled with a worm gear driven by a small DC motor

ry

force a high

ne

with th of the tracks and was controlled with a simple h-bridge. The problems

es

and was tim ing and costly to construct.

support the full trolley and detector weight. This would prove to be difficult, but

ry in the absence of additional safety features. The next goal was to get rid of

otors and incorporate the electronics into a new

main board. This would come with the electronics redesign and by choosing actuators

that could be driven with standard circuits. The last goal, but still important, was to

 clearance for vertical track misalignment and for horizontal movement of tro

n the tracks. Even if the installed track sections are perfectly aligned, we know

trolley experiences approximately a 0.25 inch vertical misalignment while leaving the lif

With these goals in mind, several concepts were considered. In short, several designs tha

ed like a scissor jack pushing on the inside of the tracks were dismissed due to the

chance that the track could be failed. Solenoid based design required constant power to

were reviewed and evaluated. The idea we pursued came from a bicycle linear-p

Using the pads from a bike brake due to their adjustability and brake arms sim

ear-pull brake, we were able to attain enough motion to both clamp t

create the desired clearance. These types of brakes are typically actuated by a cable.

rakes on the trolley are to be left on for long periods of time, a ca

inevitably stretch creating the need for periodic adjustments. Instead, an acme thread

cause it eliminated this issue and because it has a self-locking property to

 brake stays set. T

to increase the mechanical advantage. The finished brake prototype created the necessa

t the pads to hold the trolley on the lift. Although slow to actuate due to the

gear ratio, it did not get stuck in our tests. It allowed the trolley body to be located in li

e bottom

with this design was its complexity and alignment. It required too many custom piec

e consum

 95

Figure 9.9: Linear-pull style brakes

Instead of trying to simplify the linear-pull style brakes, other changes were made. By

adding the locking device on the lift described in the next section, the need for the brakes

to keep the trolley on the lift could be ignored. This reduced the force requirement by at

least 50%. Less force also meant that the brake could use the wheels as one side of the

locking mechanism without too much added stress. A geared DC motor was found that

supplied 50 inch-pounds of force. Putting a short brake arm on the axle created a simple

way to apply force underneath the wheels. The brake arm in the final version has a rubber

coating to both improve friction and electrically isolate the brakes since the test setup still

powered the entire track. The coating is Plasti Dip obtained from the hardware store and

applied in three coats for durability.

The problem with this gearmotor is that it’s not self-locking so that any back force

against the brake loosened it. To avoid this, a torsion spring was connected to the motor

on one side and the brake arm on the other. By allowing the brake arm to pivot on a pair

of small bearings all the force is transmitted through the spring and pushing against the

brake torques the spring instead of turning the motor. Initially attempts were made to

bend the springs outward to fit into a piece attached the motor shaft and the brake arm.

The method proved to be very inexact and additional pieces were made that eliminated

the need to bend the spring at all. After testing this brake setup with a 40 inch-pound

 96

spring, it was determined that a spring with less force needed to be used. Once th

was shut off with th

e motor

e brakes locked, the springs would push the motor back reducing the

applied force. A spring rated at 20 inch-pounds worked well.

Figure 9.10: Brake with bent spring

The remaining issue was that of control. The spring design aided in this regard.

Momentary switches are tripped by the piece fixed to the motor shaft so that it only needs

to rotate 180 degrees to set and unset the brake. The brake arm engages the bottom of the

track before the shaft has turned 90 degrees with the remaining part of the rotation

working to tension the spring. With repeated test it was found that this system worked

reliably and was easy to control. The resulting brakes are directional since the arm is

rotated in the tracks and remains at a slight angle when set. To solve this issue, we simple

made the two brake counter-rotate so their braking forces went in opposite directions.

 97

Figure 9.11: Current brakes

One problem was found with the support brackets. Due to the tight spacing a thinner

piece of aluminum was used which the brakes would flex inward when set. Attempts to

reinforce the corner of the bracket were unsuccessful due to the large bending moment

applied. Instead a simple set of braces were constructed that make the brakes rigid.

Figure 9.12: Brake braces

As a completed brake system, it does not meet all the goals we had originally set out for

ourselves. It does extend below the trolley body so the space requirement goal is not met.

However, it is located a one end of the trolley and allows the body to be located at the

lower edge of the tracks. This does achieve the overall design goal of fitting the trolley

within the track height to mount the detector as high as possible. The goal to provide

enough force to support the combined trolley and detector weight was changed due to the

addition of the lift gates. The added stress on the wheels, axles, and bearings was not

 98

eliminated, but was reduced through the use of less powerful brakes. The reliability

requirement of the brakes was definitely achieved with a simple on/off control and a

design that doesn’t jam any pieces into place. The simple design also doesn’t need a

dedicated control board as the previous version did. Finally the vertical clearance and

horizontal motion requirements are met so the trolley doesn’t get hung up anywhere.

9.7 Lift Gates

As mentioned previously, one desired attribute of the brakes was locking the trolley on

the lift platform in the case the lift swayed while in motion and the trolley tried to roll off.

If the brakes could accomplish this reliably, then a second system to secure the trolley on

the lift would not be necessary. After comparing several options of the brakes to options

for gates on the lift, it was determined that the simplest system overall would consist of

less powerful brakes and lift gates. Solenoid based gates were considered, but the need

for constant power in one direction and additional control circuits were avoided with a

passive gate system. Angled pieces of delrin are attached to the front of the lift and spring

loaded with a small torsion spring around the pivot point. When the lift moves into its

fully seated position, the gates are pushed out of the way by the tracks enabling the

trolley to leave the lift. After initial tests show the system would work reliably, the delrin

was reinforced with aluminum pieces. The only difficulty is getting the spring tension

correct so that the lift gates stay in place firmly, but don’t require too much extra force on

the part of the lift motor to push out of the way. This was largely a matter or trial and

error. Small adjustment to the angle of the edge of the gates, the smoothness of the angled

face, the contact surface of the tracks, the pivot point position, and tolerances of the pivot

holes and bolts all have an effect on the gate motion.

 99

Figure 9.13: Lift gates

9.8 Power

Power delivery was originally specified as 12 volts DC to be delivered to the trolley

through the aluminum tracks directly via a pair of bronze brushes. This power drove the

trolley itself and was also used to supply the attached detector. After discussions with

Caltrans personnel and with the engineers designing the LBDS, we decided to transition

the system to 24 volts. The two main reasons behind this decision were that 24 volts is

the standard supply available at the roadside where installation of the system was to

happen in the field, and that the laser system on the LBDS would be benefit by being

supplied with 24 volts. Any subsequent detectors mounted to the trolley can use the

supplied 24 volts DC. This was a minor overall change, but is important in that any other

required voltage levels need to be converted from this source.

In testing the prototype trolley, it has always been possible to isolate the electrified tracks

from any supporting structure using wood. When deployed, however, the tracks will be

bolted or clamped directly to the supporting metal truss. In short, the power would be

connected directly to ground. A small overhead wire system was considered to isolate the

power from the track, but was dismissed due to the added complexity. In order to keep

using the metal brushes as in the past, a combination of plastic and foil tapes were

explored to allow the power to run along the tracks as before and still be isolated. In the

 100

end, samples of a polyolefin film tape and an aluminum tape were used effectively in lab

tests. The biggest concern was that at 5 mils, the aluminum would easily tear under

pressure from the brushes. It held up very well showing no signs of wear during

preliminary tests. At the current time, only a single section of track was outfitted with the

conductive strips. The other track sections will need to have the strips added and

interconnections between them still need to be designed.

Figure 9.14: Brushes for power

Figure 9.15: Conductive strip

 101

Under normal conditions the trolley should always be connected to the power supply

inside the tracks. However, the transition from the lift platform to the tracks and between

sections of tracks could create momentary interruptions in power due to gaps in the

tracks. To allow the trolley to move past these, batteries are mounted on the trolley body

to supply temporary power to the drive system and brakes only. The worst case would be

a problem with the power supply after the trolley was over the roadway. The batteries

were chosen to allow the trolley to be driven all the way across the truss to the lift before

running out of power so the unit could be lowered to the ground and checked for

problems. The batteries are wired to not provide any power to the attached detector so

that the detector doesn’t drain the batteries if the supply is interrupted.

9.9 Electronics and Control System

Aside from the brake system and the reduced height, that largest redesign to the trolley

from the initial prototype was the new electronics. As stated previously, the control

system was mostly large, handmade circuits driven with a PIC microcontroller and small

RF transmitter. Aside from the limited range, the transmitter could only provide eight

usable commands and didn’t allow two way communication. Wireless control was a goal

from the beginning and due to the fact that deployment would most likely include a

roadside Wi-Fi base station, standard Wi-Fi was chosen to provide communication. This

coupled with the desire for more flexible programming options led to the use of a Rabbit

microprocessor with Wi-Fi capabilities at the center of the new control system. The

remaining electronics consist mostly of optical isolators, commercial h-bridges for bi-

directional control of all the motors, power supply circuits, connectors, and a relay to

control detector power. The relay can be turned on or off by the operator remotely. This

was all designed to reside on a single circuit board housed within a weather proof box

smaller than our 3 inch height envelope. The backup batteries are external to the

electrical box and will power the system in the case of an power interruption.

The microprocessor was programmed in C with all the commands being carried out

within their own functions. The functions include: system initialization; communication

 102

setup; forward and backward motion; setting the speed; setting and checking the brakes;

turning power to the detector on and off; ramping the speed up and down; and other

internal functions for timing and communication. The drive motor uses a PWM signal for

speed control. The ramping of the drive speed smooths the motion of the system to avoid

jerking the detector when starting and stopping. Before motion is initiated, the system

checks the brake status to make sure they are not set, and it unsets them if necessary.

These are the basic commands and could be expanded as more functionality is desired.

The biggest advantage of the new control system is bidirectional communication, and

with it the ability to send messages back to the user. Communication is handled with two

hexadecimal digits that represent a series of predetermined commands and messages

referred to as opcodes.

The program written to control the trolley creates a server on the host computer to initiate

and maintain a TCP connection with the trolley. The program and the trolley are both set

up to connect to a managed Wi-Fi network as apposed to an ad-hoc network. This means

that the trolley will always connect to the same network and multiple trolleys can use the

same network if deployed at the same location. Once the connection is established, the

server program can send and receive opcodes and display messages corresponding to the

meaning of an incoming code. A list of the opcodes for commands, messages, and errors

is defined in the control.h file of the trolley’s control program and can be seen in the

appendix. A GUI interface is used so that an operator at the roadside can easily position

the trolley without needing to type or remember commands. The program is written on a

Linux system and uses the GTK libraries for its GUI. It has also been compiled on a Mac

system with minor modifications. Other platforms that support the GTK libraries should

be able to run the program if all the other necessary libraries are loaded. Testing with the

trolley might need to be done to make sure the opcodes are sent correctly. Differences

between versions of the same libraries could lead to errors such as opcodes not being sent

in the correct order.

 103

Figure 9.16: Control system

9.10 Future Work and Improvements

There are still many improvement that can be made to the trolley and its systems. As it’s

developed further, some of the parts might be changed completely. These suggestions are

for the next step and assume that most components will remain the same.

First a system to check for power delivery from the tracks to the trolley should be

implemented. When the system is installed, the entire track or one section might have a

problem with electrical connections. Some part of the trolley electronics could be

designed to detect an interruption on the incoming power and trigger a message to the

operator. With the battery backup in place, the trolley could then be driven along the

entire length of the tracks and test if the power supply is working everywhere.

Along the same lines, the aluminum tape that was added to the inside of tracks to provide

power should be subjected to some extended tests to determine wear characteristics. Even

though the trolley was not really aimed at constant motion, continued use might wear

through the 5 mil tape. The bronze brushes might also dig into the plastic insulation layer

beneath the conductive tape causing a short. Since repair work would entail climbing

over the road, knowing these characteristic is important.

 104

Changes to the power delivery brushes should be considered to help prevent a short. Over

time the bristles of brushes tend to spread and get bent. Unless the insulation is extended

to all inside surfaces of the track, there’s a possibility of the brushes grounding the

supply. Placing a band around the bristles to hold them in place or making the brush

much skinnier than the insulation width would both help prevent this.

The brake system would benefit from an adjustment to the brake arm geometry. The

current brake arm has a rounded end so that regardless of the exact distance from the

tracks, the contact area would be the same. This could present a problem in that the arm

can get jammed into the tracks like a cam if the trolley is somehow pushed. To avoid this,

the brake arm could be machined to have a flat that would rest against the bottom of the

tracks.

At this point the weight of the trolley has not been optimized. This was not important for

the prototype. The final version would have increased safety margins if the weight of the

trolley could be reduced. Primarily the body and mounting plate could be optimized as

there are undoubtedly areas that don’t carry much of the stress.

Before the trolley is fully deployed, several components need to be weatherproofed.

Moisture will probably be the biggest issue. The circuit board, batteries, and bearings are

all sealed. The motors will need to be waterproofed, but because they are used

intermittently it might be possible to seal them a silicone caulk.

To add more intelligence to the system, some additional sensor could be added. An

encoder on the drive motor or on the idle shaft would allow positioning to be done with

commands of distance instead of visually. Given the roughness of the positioning

necessary, the encoder on the motor would be overkill making the drive shaft or the idle

shaft the more appropriate location. Another helpful sensor would be a tilt sensor on the

trolley body. It is important that the lift platform remain level during the alignment

procedure when being raised. A tilt sensor would make sure that detectors were

connected properly so that the system is correctly balanced on the lift.

 105

Outside the trolley, but perhaps the most important improvement needed is a safety

backup on the lifting mechanism. The conditions have always been controlled during our

test. Even so, there was always a backup rope that runs over the truss and is tied to the lift

platform in case the lift cable broke. We did break the lift cable once during testing due to

a large imbalance of the trolley and detector on the lift. In a real installation, a safeguard

needs to be in place to prevent a catastrophic failure. Early attempts at this included a

clutch that would slip before the breaking point of the cable and a pin designed to break

before the cable. Neither were carried into the current lift design, but some type of

mechanism needs to be considered.

 106

CHAPTER 10

CONCLUSION

Two robust and reliable Lifting Mechanisms have been developed and built from a novel

alignment idea. The trolley-detector LM has been equipped with all-weather shielding,

and is ready for deployment on the signage truss being built for field testing over I-80 in

Sacramento. The trolley-detector LM is designed to lift 75lbf and has shown its ability to

lift over 200lbf. The trolley-detector LM has completed an endurance test in +100°F direct

sun conditions. The LM lifted 105 lbf over 100 times in a four hour time period. It also has

lifted the trolley-detector package flawlessly for multiple mobile truss test days. The

camera LM has also proved a degree of reliability many times during testing and

presentations. The two LMs combined have established a degree of reliability for the

design by lifting an estimated 300 consecutive, successful cycles.

A mobile truss has been designed and built for testing detectors, trolleys, and LMs. It has

proven its ability to hold over 1500lbf unevenly distributed across its span; its typical

loading during field testing is under 200lbf evenly distributed. The mobile truss was used

for a large and successful Caltrans presentation on October 14, 2004. This presentation

was held on Old Hutchison Road just west of Hwy 113 on the UC Davis campus.

The current iteration of the universal mounting platform (the trolley) is ready for further

refinements and extended field test. The major project goals have been reached. As

designed the system will provide increased safety when dealing with many types of

detection systems that need to be installed overhead. Existing structures can be used to

deploy the trolley and detectors. Only certain locations have a truss that extends the entire

width of the freeway. However, many of these locations are the same high traffic areas

 107

where new d

planning purposes. To make the tro form, the only requirement is an

individually designed mounting plate for each type of detector. With this, any detector

system that needs to be positioned directly over traffic can be accommodated. Finally,

communication and power delivery is done wirelessly. With the extension of the network

that is used for communication and additional feedback to the operator, offsite operation

could easily be achieved.

 detection systems are needed to provide better data for monitoring an

lley a universal plat

Figure 10.1: Entire system on lift

 108

References

Cheng, H.H., Shaw, B., Palen, J., Larson, J.E., Hu, X.D. and Van Katwyk, K., A Real-
Tile Laser-Based Detection System for Measurement of Delineations of Moving
Vehicles”, IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 2, June 2001.

Duane, J., “Mobile Platform for Overhead Detector of Road Vehicles,” M.S. Thesis,
University of California, Davis, 2001.

Duane, J., Palen, J., Eke, F., Cheng, H., “Design of a Mobile Platform For Overhead
Detectors for Vehicles on the Highway”, CD-ROM Proc. of the ASME 28th
Mechanisms and Robotics Conference, paper # DETC2004-57557, Salt Lake
City, Utah, September 28 - October 2, 2004.

Glover, Thomas J., Pocket Reference, 3rd Edition: 7th Printing, Sequoia Publishing Inc.,
August 2003.

Integrated Engineering Laboratory Home Page, http://iel.ucdavis.edu, 2005.

Lin, B., Cheng, H., Shaw, B., Chen, B., Palen, J., “Mechanical and Optical Design of a
Laser-Based Non-Intrusive Vehicle Delineation Detection System”, ASME, 2001.

Malika, J., Russell, S., Measuring Traffic Parameters Using Video Image Processing”,
Intellimotion, Vol. 6 No. 1, pp. 6-7, 12-13, http://path.berkeley.edu, 1997.

McMaster-Carr, Plastic Material Comparisons,
http://www.mcmaster.com/param/html/C109AboutPlastics. July, 2004.

Palen, J., “The Need for Surveillance in Intelligent Transportation Systems”,
Intellimotion, Vol. 6 No. 1, pp. 1-3, http://path.berkeley.edu, 1997.

Sun, C. and Ritchie, S.G., “Individual Vehicle Speed Estimation Using Single Loop
Inductive Wave Forms”, Journal of Transportation Engineering,
November/December 1999.

Precision Electronic Opto-Mechanical System for Vehicle Delineation Detection on
Highway”, ASME Journal of Mechanical Design, Vol. 125, pp. 802-808,
December 2003.

Wang, Z., Nestinger, S., Cheng, H., Shaw, B., “Real-Time Architecture for an Electro-
Mech-Optical System for Detection of Vehicles on Highway”, paper #
DETC2004-57750, Salt Lake City, Utah, September 28-October 2, 2004.

Werner Co., How to choose and use a Werner Ladder, http://www.wernerladder.com,
2005.

W.W. Grainger, Inc., Grainger Industrial Supply Catalog and Gear Motor Selection
Guide, 1999.

Yu, Q., Eke, F., Cheng, H., Duane, J., Palen, J., “Control of a Mobile Support Platform
for Vehicle Detectors on Highway”, CD-ROM Proc. of the ASME 24th
Computers in Engineering Conference, paper # DETC2004-57706, Salt Lake
City, Utah, September 28 - October 2, 2004.

 109

 110

 111 111

AAPPPPEENNDDIIXX II,, AABBDDSS--TTRROOLLLLEEYY LLMM CCOONNSSTTRRUUCCTTIIOONN

DDRRAAWWIINNGGSS

 112 112

 113 113

 114 114

 115 115

 116 116

 117

 118

 119 119

 120

 121

AAPPPPEENNDD A CCOONNSSTTRRUUCC

IIXX IIII,, CCAAMMEERRA LLMM TTIIOONN

DDRRAAWWIINNGGSS

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

AAPPPPEENNDDIIXX IIIIII,, TTRRUUSSSS CCOONNSSTTRRUUCCTTIIOONN DDRRAAWWIINNGGSS

FIGURE 3-A3, DIMENSIONED TRUSS

Units: inches

FIGURE 4-A3, BOTTOM END FISH PLATE

Units: inches

FIGURE 5-A3, TOP END FISH PLATE

Units: inches

 132

FIGURE 6-A3, EXTENSION LEGS FISH PLATE

Units: inches

FIGURE 7-A3, STANDARD FISH PLATE

Units: inches

 133

FIGURE 8-A3, LADDER LENGTHS USED FOR MOBILE TRUSS

Units: inches

 134

AAPPPPEENNDDIIXX IIVV,, SSMM BBIILLLL OOFF

MMAATTEERRIIAALLSS
 TTRROOLLLLEEYY LLIIFFTTIINNGG MMEECCHHAANNII

Trolley Lifting Mechanism Bill of Materials

Listing Part Description Function Material Source Catalog # Quantity Length/Size Cost
6061 T-8 Aluminum Stock

AL 1 Sleeve

LM Back Bone /
Primary

Alignment

Round
Tubing,

2"ID, 0.25"
Wall

ABC
Supply - 1 31.5" $10.00

AL 2 Mobile Plate

Fixture/trolley
Connection
Platform 1/2" Plate

Blue Collar
Supply - 1

8-3/4" X 15-
3/8 $14.00

AL 3 Stationary plate

Mounting Plate
for Lifting
Mechanism 1/2" Plate

Blue Collar
Supply - 1

8-3/4" X 15-
3/8 $14.00

AL 4 Motor Plate

Mount for Motor,
Connects to

Sleeve 1/2" Plate
Blue Collar

Supply - 1 8" X 8" $30.00

AL 5 Plate Flange
Connect Plates to

Sleeve

Round
Tubing, 2-
1/2" ID,

5/8" Wall
ABC

Supply - 2 4" $60.00

AL 6 Support Flange

Stabilizes Sleeve
Walls Around

Slits

Round
Tubing
Stock

ABC
Supply - 1 2" $1.00

AL 7 Toggle Bone
Protects Apex of
Sleeve Contour

Rectangular
Stock

Blue Collar
Supply - 1 4" X 7/8 X 5/8" $1.00

AL 8 Limit Stop
Limits Toggle
Bone Rotation

Rectangular
Stock

Blue Collar
Supply - 1

1-1/8" X 1/2" X
3/8" $1.00

AL 9 Pulley Drum

Connects to
Motor, Cable

Wraps Around it
2" Round

Stock
Blue Collar

Supply - 1 2" $2.00

AL 10 Pulley Side
Contains Cable on

Pulley Drum 1/4" Plate
Blue Collar

Supply - 2 4" Dia. $1.00
Delrin, White

D 1 Slider
Lowers Cable

Fulcrum
2" Round

Stock
McMaster-

Carr 8572K29 1 6" $6.00

D 2 Plug

Performs Initial
Alignment with

Sleeve
2" Round

Stock
McMaster-

Carr 8572K29 1 23" $26.00

D 3
Final Alignment Cone

(Stationary)

Performs Final
Alignment and

Houses

1-1/2"
Round
Stock

McMaster-
Carr 8572K25 4 1/1/2" X 5" $15.00

D 4
Final Alignment Cone

(Mobile)

Performs Final
Alignment with

Sleeve

1-1/2"
Round
Stock

McMaster-
Carr 8572K25 4 1-1/2" X 4" $12.00

D 5 Trolley Stop

Stops Trolley on
Lifting

Mechanism
Tracks

1" Round
Stock

McMaster-
Carr 8572K61 1 1" X 2" $3.00

D 6
C-Channel Insulating

Bushing

Insulates Tracks
from Mobile

Plate
1" Round

Stock
McMaster-

Carr 8572K61 4 1" X 1/4" $1.00

D 7
C-Channel Insulating

Flanged Insert

Insulates Tracks
from Mobile

Plate
1" Round

Stock
McMaster-

Carr 8572K61 4 1" X 1/8" $1.00
Black ABS Plastic, Schedule 40 Pipe and Sheet Stock

ABS 1
Micro Switch

Bracket
Connects Micro

Switch to Sleeve
3/16"
Sheet

Tap
Plastics - 2

3/16" X 1-1/2"
X 2-1/4" $1.00

ABS 2 Pulley Spool Cover

Keeps Cable from
Tangling when

not Taught
1/16"
Sheet

Tap
Plastics - 1 1/16" X 2" X 9" $1.00

ABS 3
Electronics Side

Cover

Covers Time
Delay Circuit and
Terminal Strip

3/16"
Sheet

Tap
Plastics - 1

3/16" X 1-7/8"
X 14" $1.00

ABS 4
Electronics Bottom

Cover

Covers Time
Delay Circuit and
Terminal Strip

3/16"
Sheet

Tap
Plastics - 1

3/16 " X 5" X
5" $1.00

ABS 5
Electronics

Mounting Plate

Mounting for
Time Delay

Circuit and Relay
3/16"
Sheet

Tap
Plastics - 1

3/16" X 2-1/4"
X 3" $1.00

 135

ABS 6
Control Panel
Support Pipe

Holds Control
Panel Off Ground 4" Pipe

Home
Depot - 1 4' X 4" Dia. $3.00

ABS 7

Control Panel
Support Pipe Street

Tee Outlet for Wires 4" Coupling
Home
Depot - 1 4' X 4" Dia. $2.00

ABS 8
Control Panel Base

Connection

Connects
Support Pipe to

Base

4"
Threaded

Plug
Home
Depot - 1 4" Dia. $2.00

ABS 9
Control Panel

Coupling

Connects
Support Pipe to

Base

4"
Threaded,
Slip Fit,
Coupling

Home
Depot - 1 4" Dia. $2.00

ABS 10 Control Box

Contains Control
Switches and

Wires

2" Opening
Access

Panel (Grey
PVC)

Home
Depot - 1 2" X 6" $8.00

Hardware
Toggle Bone and Plug

H 1

Flat Head, Phillips
Drive, Machine

Screw
Pivot for Toggle

Bone
Zinc Plated

Steel
Orchard
Supply - 1

SAE 1-1/2" 1/4-
20 $1.00

H 2 Nylon Lock Nut
Secure Toggle

Bone
Zinc Plated

Steel
Blue Collar

Supply - 1 SAE 1/4-20 $1.00

H 3 Flat Washer/Shim

Spacer Between
Toggle Bearings

and Sleeve
Zinc Plated

Steel
McMaster-

Carr 99040A516 19 SAE 1/4" $8.20

H 4

Flat Head, Phillips
Drive, Machine

Screw

Secure Free-
Spinning Bearing
to Toggle Bone

Stainless
Steel

McMaster-
Carr 91500A153 1 SAE 1" 10-32 $1.00

H 5

Flat Head, Phillips
Drive, Machine

Screw

Secure Free-
Spinning Bearing

to Plug
Stainless

Steel
McMaster-

Carr 91500A153 1 SAE 1" 10-33 $1.00

H 6

Flat Head, Phillips
Drive, Machine

Screw
Fasten Limit

Stop to Sleeve
Zinc Plated

Steel
McMaster-

Carr 90273A107 2 SAE 5/16" 4-40 $1.00

H 7

Miniature Precision
Stainless Steel Ball

Bearing

Initial Alignment
on Toggle Bone

and Plug
Stainless

Steel RC Country - 4
1/4" X 1/2" X

3/16" $16.00
Slider

H 8
Socket Head Cap

Screw
Guide Pin for

Slider
Anodized

Steel
Orchard
Supply - 2 SAE 1/2" 10-32 $1.00

H 9
Compression

Washer
Bearing for
Guide Pin

Zinc Plated
Steel

Blue Collar
Supply - 2 SAE 10-32 $1.00

Alignment Cones

H 10

Pan Head, Phillips
Drive, Machine

Screw
Fasten Final

Alignment Cone
Zinc Plated

Steel
Blue Collar

Supply - 16
SAE 1-1/2" 10-

32 $1.00

H 11 Flat Washer
Fasten Final

Alignment Cone
Zinc Plated

Steel
Blue Collar

Supply - 16 SAE 10-32 $1.00

H 12
Compression

Washer
Fasten Final

Alignment Cone
Zinc Plated

Steel
Blue Collar

Supply - 16 SAE 10-32 $1.00
Flanges and Plates

H 13
Socket Head Cap
Machine Screw

Fasten Static
Plate Flange to

Sleeve
Anodized

Steel
Blue Collar

Supply - 16 SAE 1" 1/4-20 $1.00

H 14
Socket Head Cap
Machine Screw

Fasten Support
Flange to Sleeve

Anodized
Steel

Blue Collar
Supply - 8

SAE 5/8" 1/4-
20 $1.00

H 15
Socket Heat Cap
Machine Screw

Fasten Micro
Switch to ABS

Bracket
Anodized

Steel
McMaster-

Carr 91251A114 4 SAE 7/8" 4-40 $1.00

H 16
Socket Head Cap
Machine Screw

Fasten ABS
Bracket to

Sleeve
Anodized

Steel
McMaster-

Carr 91251A108 4 SAE 3/8" 4-40 $1.00

H 17
Socket Head Cap

Screw

Fasten
Stationary Plates

to Flanges
Anodized

Steel
Blue Collar

Supply - 6
SAE 1-1/4" 1/4-

20 $1.00

H 18 Flat Washer

Bearing Under
1/4-20 Socket

Head Cap Screws
Zinc Plated

Steel
Blue Collar

Supply - 30 SAE 1/4-20 $1.00

H 19
Compression

Washer

Bearing Under
1/4-20 Socket

Head Cap Screws
Zinc Plated

Steel
Blue Collar

Supply - 30 SAE 1/4-20 $1.00

H #
Socket Head Cap

Screw
Fasten Plug and

Mobile Plate
Anodized

Steel
Blue Collar

Supply - 4
SAE 1-1/2" 1/4-

20 $1.00
C-Channel

 136

H 21

Pan Head, Phillips
Drive, Machine

Screw
Fasten C-Channel
to Mobile Plate

Zinc Plated
Steel

Blue Collar
Supply - 4

SAE 1-1/4" 10-
32 $1.00

H # Flat Washer
Fasten C-Channel
to Mobile Plate

Zinc Plated
Steel

Blue Collar
Supply - 4 SAE 10-32 $1.00

H #
Compression

Washer
Fasten C-Channel
to Mobile Plate

Zinc Plated
Steel

Blue Collar
Supply - 4 SAE 10-32 $1.00

H # Lock Nut
Fasten C-Channel
to Mobile Plate

Steel,
Nylon

Blue Collar
Supply - 4 SAE 10-32 $1.00

H #

Pan Head, Phillips
Drive, Machine

Screw
Fasten Power Lug

to C-Channel
Zinc Plated

Steel
Blue Collar

Supply - 2 SAE 3/8" 4-40 $1.00

H # Flat Washer
Fasten Power Lug

to C-Channel
Zinc Plated

Steel
Blue Collar

Supply - 4 SAE 4-40 $1.00

H #
Compression

Washer
Fasten Power Lug

to C-Channel
Zinc Plated

Steel
Blue Collar

Supply - 2 SAE 4-40 $1.00

H # Nylon Lock Nut
Fasten Power Lug

to C-Channel
Zinc Plated

Steel
Blue Collar

Supply - 2 SAE 4-40 $1.00
Cable Assembly

H #
Docking

Stabilization Spring
Secures Docked

Mobile Plate

Spring
Steel, 175

lbf/in,
230lbf
total

Jones
Spring

C32-187-
384 1 0.970" X 11" $7.00

H # Flat Washer
Bearing on Each

Spring End
Zinc Plated

Steel
Orchard
Supply - 2 1" OD X 1/4" ID $1.00

H 31 1/16" Steel Cable

Fasten Mobile
Plate to Lifting

Mechanism
Stainless

Steel
Home
Depot 754670 1 1/16" Dia. X 40' $6.40

H #
Cable Synch-Down

Bolt
Squeezes Cable
Inside of Plug

Zinc Plated
Steel

Orchard
Supply - 1

SAE 5/8" 3/8-
16 $1.00

H #
Cable Synch-Down

Nut
Squeezes Cable
Inside of Plug

Zinc Plated
Steel

Orchard
Supply - 1 SAE 3/8-16 $1.00

H #
Cable Synch-Down

Washer
Squeezes Cable
Inside of Plug

Zinc Plated
Steel

Orchard
Supply - 5 SAE 3/8" $1.00

H # Cable Anchor Bolt
Anchor Cable
inside of Plug

Zinc Plated
Steel

Orchard
Supply - 1 SAE 1/2" 10-32 $1.00

H # Cable Anchor Nut
Anchor Cable
inside of Plug

Zinc Plated
Steel

Orchard
Supply - 1 SAE 10-32 $1.00

H #
Cable Anchor

Washer
Anchor Cable
inside of Plug

Zinc Plated
Steel

Orchard
Supply - 2 SAE 10-32 $1.00

Pulley

H #

Flat Head, Phillips
Drive, Machine

Screw

Fasten Pulley
Sides to Pulley

Drum
Zinc Plated

Steel
McMaster-

Carr 91099A167 8 SAE 1/2" 4-40 $1.00

H # Set Screw
Fasten Pulley to

Motor Shaft
Zinc Plated

Steel
Orchard
Supply - 2 SAE 1/2" 10-32 $1.00

Micro Switches

H #
Socket Head Cap
Machine Screw

Fasten Micro
Switches to ABS

Bracket
Anodized

Steel
McMaster-

Carr 91251A106 4 SAE 1/4" 4-40 $1.00

H 41 Flat Washer

Bearing for
Micro Switch

Fasteners
Zinc Plated

Steel
Blue Collar

Supply - 4 SAE 4-40 $1.00

H #
Compression

Washer

Locking for
Micro Switch

fasteners
Zinc Plated

Steel
Blue Collar

Supply - 4 SAE 4-40 $1.00
Motor and Electrical Cover

H #
Socket Head Cap
Machine Screw

Fasten Motor to
Motor Plate

Anodized
Steel

Blue Collar
Supply - 2

SAE 1-1/4" 1/4-
20 $1.00

H # Flat Washer
Fasten Motor to

Motor Plate
Zinc Plated

Steel
Blue Collar

Supply - 4 SAE 1/4 $1.00

H # Nylon Lock Nut
Fasten Motor to

Motor Plate
Steel,
Nylon

Blue Collar
Supply - 7 SAE 1/4-20 $1.00

H # Long Nut
Fasten Circuit to

Motor Plate
Zinc Plated

Steel
Orchard
Supply - 1

SAE 1" X 1/4-
20 $1.00

H #
Socket Head Cap
Machine Screw

Fasten Motor
Cover to Motor

Plate
Anodized

Steel
Blue Collar

Supply - 1
SAE 1-1/4" 1/4-

20 $1.00

H #
Socket Head Cap
Machine Screw

Fasten Motor
Cover to Motor

Plate
Anodized

Steel
Blue Collar

Supply - 1
SAE 2-1/2"

1/4-20 $1.00

H # Flat Washer

Fasten Motor
Cover to Motor

Plate
Zinc Plated

Steel
Blue Collar

Supply - 2 SAE 1/4-20 $1.00

H # Lock Nut
Fasten Motor

Cover to Motor
Steel,
Nylon

Blue Collar
Supply - 2 SAE 1/4-20 $1.00

 137

Plate

Power Transmission Spring Assembly

H 51

Pan Head, Phillips
Drive, Machine

Screw

Squeezes
Assembly
Together

Zinc Plated
Steel

Blue Collar
Supply - 4

SAE 2-1/2 10-
32 $1.00

H # Flat Washer

Bearing for
Rubber

Components
Zinc Plated

Steel
Blue Collar

Supply - 8 SAE 10-32 $1.00

H # Rubber Grommet
Pushes Rubber

Spacer Outward Rubber
Orchard
Supply - 4

5/8" OD, 1/8"
ID, 1/4" $1.00

H # Rubber Spacer

Pushes Spring
Against Cone
Inside Wall Rubber

Orchard
Supply - 4

5/8" OD, 1/2"
ID, 1/2" $1.00

H 55 Nylon Lock Nut

Determines when
Pan head Screw

Bottoms Out

Zinc Plated
Steel,
Nylon

Blue Collar
Supply - 4 SAE 10-32 $1.00

H #
Power Transmission

Spring
Transmits Power
to Mobile Plate

Spring
Steel RC Country - 4

5/8" Dia. X 2-
1/2" Lg. $4.00

H 57 Flat Washer

Spacer at
Deepest Point
Inside Cone

Zinc Plated
Steel

Blue Collar
Supply - 12 SAE 1/4-20 $1.00

Electrical

E 1
Speed Control Micro
Switch, 250V, 15A

Switches Motor
to/from slow

speed
Steel Lever

Arm
McMaster-

Carr 7783K12 1
1.94" X 0.69" X

0.95" $7.66

E 2
Limit Micro Switch,

250V, 15A
Begins motor

shut-off process
Steel Lever

Arm
McMaster-

Carr 7783K12 1
1.94" X 0.69" X

0.95" $7.66

E 3 Terminal Block

Junction for All
Wires on Lifting

Mechanism
Nylon,
Steel

McMaster-
Carr 7527K49 1

7/8" X 4" X
5/16" $2.00

E 4 Wire Lugs
Connect Wires to

Terminal Block Steel
McMaster-

Carr 7113K11 25
#6 Lug, #18

Crimp $3.00

E 5 Delay Circuit

Compress
Stabilization

Spring Ask Mark
Mark

Bruening - 1 1" X 3/4" X 2" $10.00

E 6 Wires
Connect

Components
Copper

Stranded
Home
Depot - 1 20' $4.00

E 7
Power and Control

Cords
Power and signal

Leads/Plugs
Extension

Cord
Home
Depot - 4 6' $16.00

E 8

DPDT Toggle
Switch, Neutral

Center

Motor Control
Switch, Up,
Down, Off

Steel,
Glass Filled

Nylon
Radio
Shack 750653 1

1" X 3/4" X 1-
1/2" $3.00

E 9

Motor, 120V AC/DC,
4.0 RPM, 1/15 HP,

250 in-lb
Lower and Raise

Mobile Plate
Steel

Housing Grainger 1L486 1
4-1/4" X 5" X

9" $116.00

E 10
Relay, 12 Volt Coil,
120 Volt Contact

Turns On and
Off Motor

Plastic,
Steel,
Copper HSC - 1

1" " 3/4" X 1-
1/2" $3.00

E 11 Tie Straps

Secure Wires on
Lifting

Mechanism Plastic
Home
Depot - 29 4" $2.00

 414 Total $488

 138

AAPPPPEENNDDIIXX VV,, CCAAMMEERRAA LLIIFFTTIINNGG MMEECCHHAANNIISSMM BBIILLLL OOFF

MMAATTEERRIIAALLSS
Camera Lifting Mechanism Bill of Materials

Listing Part Description Function Material Source Catalog # Quantity Length/Size Cost
6061 T-8 Aluminum Stock

AL 1 Sleeve

LM Back Bone /
Primary

Alignment

Round
Tubing,

2"ID, 0.25"
Wall

ABC
Supply - 1 18-3/8" $10.00

AL 2 Mobile Plate

Fixture/trolley
Connection
Platform 1/2" Plate

Blue Collar
Supply - 1 10" X 15" $14.00

AL 3 Stationary plate

Mounting Plate
for Lifting
Mechanism 1/2" Plate

Blue Collar
Supply - 1 10" X 15" $14.00

AL 4 Motor Plate

Mount for
Motor, Connects

to Sleeve 1/2" Plate
Blue Collar

Supply - 1 8" X 8" $10.00

AL 5 Plate Flange
Connect Plates

to Sleeve

Round
Tubing, 2-
1/2" ID,

5/8" Wall
ABC

Supply - 2 4" $60.00

AL 6 Toggle Bone
Protects Apex of
Sleeve Contour

Rectangular
Stock

Blue Collar
Supply - 1

3" X 7/8 X
5/8" $1.00

AL 7 Limit Stop
Limits Toggle
Bone Rotation

Rectangular
Stock

Blue Collar
Supply - 1

1-1/8" X 1/2" X
3/8" $1.00

AL 8 Pulley Drum

Connects to
Motor, Cable

Wraps Around it
2" Round

Stock
Blue Collar

Supply - 1 2" $2.00

AL 9 Pulley Side
Contains Cable
on Pulley Drum 1/4" Plate

Blue Collar
Supply - 2 4" Dia. $1.00

Delrin, White

D 1 Slider
Lowers Cable

Fulcrum
2" Round

Stock
McMaster-

Carr 8572K29 1 5-1/4" $6.00

D 2 Plug

Performs Initial
Alignment with

Sleeve
2" Round

Stock
McMaster-

Carr 8572K29 1 12" $13.00

D 3
Final Alignment

Cone (Stationary)

Performs Final
Alignment and

Houses

1-1/2"
Round
Stock

McMaster-
Carr 8572K25 4

1/1/2" X 7-
5/8" $30.00

D 4
Final Alignment
Cone (Mobile)

Performs Final
Alignment with

Sleeve

1-1/2"
Round
Stock

McMaster-
Carr 8572K25 4 1-1/2" X 2" $12.00

D 5 Trolley Stop

Stops Trolley on
Lifting

Mechanism
Tracks

1" Round
Stock

McMaster-
Carr 8572K61 1 1" X 2" $3.00

Black ABS Plastic, Schedule 40 Pipe and Sheet Stock

ABS 1
Micro Switch

Bracket
Connects Micro

Switch to Sleeve
3/16"
Sheet

Tap
Plastics - 2

3/16" X 1-1/2"
X 2-1/4" $1.00

ABS 2 Pulley Spool Cover

Keeps Cable
from Tangling

when not Taught
1/16"
Sheet

Tap
Plastics - 1 1/16" X 2" X 9" $1.00

ABS 3
Electronics Side

Cover

Covers Time
Delay Circuit and
Terminal Strip

3/16"
Sheet

Tap
Plastics - 1

3/16" X 1-7/8"
X 14" $1.00

ABS 4
Electronics Bottom

Cover

Covers Time
Delay Circuit and
Terminal Strip

3/16"
Sheet

Tap
Plastics - 1

3/16 " X 5" X
5" $1.00

ABS 5
Electronics

Mounting Plate

Mounting for
Time Delay

Circuit and Relay
3/16"
Sheet

Tap
Plastics - 1

3/16" X 2-1/4"
X 3" $1.00

ABS 6
Control Panel
Support Pipe

Holds Control
Panel Off
Ground 4" Pipe

Home
Depot - 1 4' X 4" Dia. $3.00

ABS 7

Control Panel
Support Pipe
Street Tee Outlet for Wires 4" Coupling

Home
Depot - 1 4" Dia. $2.00

ABS 8
Control Panel Base

Connection

Connects
Support Pipe to

Base

4"
Threaded

Plug
Home
Depot - 1 4" Dia. $2.00

 139

ABS 9
Control Panel

Coupling

Connects
Support Pipe to

Base

4"
Threaded,
Slip Fit,
Coupling

Home
Depot - 1 4" Dia. $2.00

ABS 10 Control Box

Contains Control
Switches and

Wires

2" Opening
Access

Panel (Grey
PVC)

Home
Depot - 1 2" X 6" $8.00

Hardware
Toggle Bone and Plug

H 1

Flat Head, Phillips
Drive, Machine

Screw
Pivot for Toggle

Bone
Zinc Plated

Steel
Orchard
Supply - 1

SAE 1-1/2"
1/4-20 $1.00

H 2 Nylon Lock Nut
Secure Toggle

Bone
Zinc Plated

Steel
Blue Collar

Supply - 1 SAE 1/4-20 $1.00

H 3 Flat Washer/Shim

Spacer Between
Toggle Bearings

and Sleeve
Zinc Plated

Steel
McMaster-

Carr 99040A516 19 SAE 1/4" $8.20

H 4

Flat Head, Phillips
Drive, Machine

Screw

Secure Free-
Spinning Bearing
to Toggle Bone

Stainless
Steel

McMaster-
Carr 91500A153 1 SAE 1" 10-32 $1.00

H 5

Flat Head, Phillips
Drive, Machine

Screw

Secure Free-
Spinning Bearing

to Plug
Stainless

Steel
McMaster-

Carr 91500A153 1 SAE 1" 10-33 $1.00

H 6

Flat Head, Phillips
Drive, Machine

Screw
Fasten Limit

Stop to Sleeve
Zinc Plated

Steel
McMaster-

Carr 90273A107 2
SAE 5/16" 4-

40 $1.00

H 7

Miniature Precision
Stainless Steel Ball

Bearing

Initial Alignment
on Toggle Bone

and Plug
Stainless

Steel RC Country - 4
1/4" X 1/2" X

3/16" $16.00
Slider

H 8
Socket Head Cap

Screw
Guide Pin for

Slider
Anodized

Steel
Orchard
Supply - 2 SAE 1/2" 10-32 $1.00

H 9
Compression

Washer
Bearing for
Guide Pin Steel

Blue Collar
Supply - 2 SAE 10-32 $1.00

Alignment Cones

H 10

Pan Head, Phillips
Drive, Machine

Screw
Fasten Final

Alignment Cone Steel
Blue Collar

Supply - 16
SAE 1-1/2" 10-

32 $1.00

H 11 Flat Washer
Fasten Final

Alignment Cone Steel
Blue Collar

Supply - 16 SAE 10-32 $1.00

H 12
Compression

Washer
Fasten Final

Alignment Cone Steel
Blue Collar

Supply - 16 SAE 10-32 $1.00
Flanges and Plates

H 13
Socket Head Cap
Machine Screw

Fasten Static
Plate Flange to

Sleeve
Anodized

Steel
Blue Collar

Supply - 16 SAE 1" 1/4-20 $1.00

H 14
Socket Head Cap
Machine Screw

Fasten Support
Flange to Sleeve

Anodized
Steel

Blue Collar
Supply - 8

SAE 5/8" 1/4-
20 $1.00

H 15
Socket Heat Cap
Machine Screw

Fasten Micro
Switch to ABS

Bracket
Anodized

Steel
McMaster-

Carr 91251A114 4 SAE 7/8" 4-40 $1.00

H 16
Socket Head Cap
Machine Screw

Fasten ABS
Bracket to

Sleeve
Anodized

Steel
McMaster-

Carr 91251A108 4 SAE 3/8" 4-40 $1.00

H 17
Socket Head Cap

Screw

Fasten
Stationary

Plates to Flanges
Anodized

Steel
Blue Collar

Supply - 6
SAE 1-1/4"

1/4-20 $1.00

H 18 Flat Washer

Bearing Under
1/4-20 Socket

Head Cap
Screws Steel

Blue Collar
Supply - 30 SAE 1/4-20 $1.00

H 19
Compression

Washer

Bearing Under
1/4-20 Socket

Head Cap
Screws Steel

Blue Collar
Supply - 30 SAE 1/4-20 $1.00

H 20
Socket Head Cap

Screw
Fasten Plug and

Mobile Plate
Anodized

Steel
Blue Collar

Supply - 4
SAE 1-1/2"

1/4-20 $1.00
Cable Assembly

H 21

Docking
Stabilization

Spring
Secures Docked

Mobile Plate

Spring
Steel, 20.5
lbs/in, 41.2
lbs Total

Load
McMaster-

Carr 9657K254 1
3-1/16" Lg. X

7/8" Dia. $13.49

H 22 Flat Washer
Bearing on Each

Spring End Steel
Orchard
Supply - 2

1" OD X 1/4"
ID $1.00

 140

H 23 1/16" Steel Cable

Fasten Mobile
Plate to Lifting

Mechanism
Stainless

Steel
Home
Depot 754670 1

1/16" Dia. X
40' $6.40

H 24
Cable Synch-Down

Bolt
Squeezes Cable
Inside of Plug Steel

Orchard
Supply - 1

SAE 5/8" 3/8-
16 $1.00

H 25
Cable Synch-Down

Nut
Squeezes Cable
Inside of Plug Steel

Orchard
Supply - 1 SAE 3/8-16 $1.00

H 26
Cable Synch-Down

Washer
Squeezes Cable
Inside of Plug Steel

Orchard
Supply - 5 SAE 3/8" $1.00

H 27 Cable Anchor Bolt
Anchor Cable
inside of Plug Steel

Orchard
Supply - 1 SAE 1/2" 10-32 $1.00

H 28 Cable Anchor Nut
Anchor Cable
inside of Plug Steel

Orchard
Supply - 1 SAE 10-32 $1.00

H 29
Cable Anchor

Washer
Anchor Cable
inside of Plug Steel

Orchard
Supply - 2 SAE 10-32 $1.00

Pulley

H 30

Flat Head, Phillips
Drive, Machine

Screw

Fasten Pulley
Sides to Pulley

Drum Steel
McMaster-

Carr 91099A167 8 SAE 1/2" 4-40 $1.00

H 31 Set Screw
Fasten Pulley to

Motor Shaft Steel
Orchard
Supply - 2 SAE 1/2" 10-32 $1.00

Micro Switches

H 32
Socket Head Cap
Machine Screw

Fasten Micro
Switches to ABS

Bracket
Anodized

Steel
McMaster-

Carr 91251A106 4 SAE 1/4" 4-40 $1.00

H 33 Flat Washer

Bearing for
Micro Switch

Fasteners Steel
Blue Collar

Supply - 4 SAE 4-40 $1.00

H 34
Compression

Washer

Locking for
Micro Switch

fasteners Steel
Blue Collar

Supply - 4 SAE 4-40 $1.00
Motor and Electrical Cover

H 35
Socket Head Cap
Machine Screw

Fasten Motor to
Motor Plate

Anodized
Steel

Blue Collar
Supply - 2

SAE 1-1/4"
1/4-20 $1.00

H 36 Flat Washer
Fasten Motor to

Motor Plate Steel
Blue Collar

Supply - 4 SAE 1/4 $1.00

H 37 Nylon Lock Nut
Fasten Motor to

Motor Plate
Steel,
Nylon

Blue Collar
Supply - 7 SAE 1/4-20 $1.00

H 38 Long Nut
Fasten Circuit to

Motor Plate Steel
Orchard
Supply - 1

SAE 1" X 1/4-
20 $1.00

H 39
Socket Head Cap
Machine Screw

Fasten Motor
Cover to Motor

Plate
Anodized

Steel
Blue Collar

Supply - 1
SAE 1-1/4"

1/4-20 $1.00

H 40
Socket Head Cap
Machine Screw

Fasten Motor
Cover to Motor

Plate
Anodized

Steel
Blue Collar

Supply - 1
SAE 2-1/2"

1/4-20 $1.00

H 41 Flat Washer

Fasten Motor
Cover to Motor

Plate Steel
Blue Collar

Supply - 2 SAE 1/4-20 $1.00

H 42 Lock Nut

Fasten Motor
Cover to Motor

Plate
Steel,
Nylon

Blue Collar
Supply - 2 SAE 1/4-20 $1.00

Power Transmission Spring Assembly

H 43

Pan Head, Phillips
Drive, Machine

Screw

Squeezes
Assembly
Together

Zinc Plated
Steel

Blue Collar
Supply - 4

SAE 2-1/2 10-
32 $1.00

H 44 Flat Washer

Bearing for
Rubber

Components
Zinc Plated

Steel
Blue Collar

Supply - 8 SAE 10-32 $1.00

H 45 Rubber Grommet
Pushes Rubber

Spacer Outward Rubber
Orchard
Supply - 4

5/8" OD, 1/8"
ID, 1/4" $1.00

H 46 Rubber Spacer

Pushes Spring
Against Cone
Inside Wall Rubber

Orchard
Supply - 4

5/8" OD, 1/2"
ID, 1/2" $1.00

H 47 Nylon Lock Nut

Determines when
Pan head Screw

Bottoms Out

Zinc Plated
Steel,
Nylon

Blue Collar
Supply - 4 SAE 10-32 $1.00

H 48
Power Transmission

Spring
Transmits Power
to Mobile Plate

Spring
Steel RC Country - 4

5/8" Dia. X 2-
1/2" Lg. $4.00

H 49 Flat Washer

Spacer at
Deepest Point
Inside Cone

Zinc Plated
Steel

Blue Collar
Supply - 12 SAE 1/4-20 $1.00

Electrical

E 1

Speed Control
Micro Switch,

250V, 15A

Switches Motor
to/from slow

speed
Steel Lever

Arm
McMaster-

Carr 7783K12 1
1.94" X 0.69" X

0.95" $7.66

 141

E 2
Limit Micro Switch,

250V, 15A
Begins motor

shut-off process
Steel Lever

Arm
McMaster-

Carr 7783K12 1
1.94" X 0.69" X

0.95" $7.66

E 3 Terminal Block

Junction for All
Wires on Lifting

Mechanism
Nylon,
Steel

McMaster-
Carr 7527K49 1

7/8" X 4" X
5/16" $2.00

E 4 Wire Lugs

Connect Wires
to Terminal

Block Steel
McMaster-

Carr 7113K11 25
#6 Lug, #18

Crimp $3.00

E 5 Wires
Connect

Components
Copper

Stranded
Home
Depot - 1 20' $4.00

E 6
Power and Control

Cords
Power and signal

Leads/Plugs
Extension

Cord
Home
Depot - 4 6' $16.00

E 7

DPDT Toggle
Switch, Neutral

Center

Motor Control
Switch, Up,
Down, Off

Steel,
Glass Filled

Nylon
Radio
Shack 750653 1

1" X 3/4" X 1-
1/2" $3.00

E 8

Motor, 120V
AC/DC, 12.8 RPM,
1/15 HP, 110 in-lb

Lower and Raise
Mobile Plate

Steel
Housing Grainger 1L484 1

4-1/4" X 5" X
9" $116.00

E 9 Tie Straps

Secure Wires on
Lifting

Mechanism Plastic
Home
Depot - 29 4" $2.00

 142

 143

AAPPPPEENNDDIIXX VVII,, TTRRUUSSSS BBIILLLL OOFF MMAATTEERRIIAALLSS

Mobile Truss Bill of Materials

Listing Part Description Function Material Source Catalog # Quantity Length/Size Cost
Werner Aluminum Extension Ladders and C-Channel

AL 1
124" Angled Span

Piece
Span

Triangulation

24'
250LB,
Type 1
Duty

Home
Depot 51751012170 4 124" $318.00

AL 2
112" Bottom Span

Piece

Span Tension,
Support

Aluminum C-
Channel

24'
250LB,
Type 1
Duty

Home
Depot 51751012170 4 112" $318.00

AL 3
112" Horizontal Top

Span Piece

Span
Compression,
Top Pieces

24'
250LB,
Type 1
Duty

Home
Depot 51751012170 2 112" $159.00

AL 4
64" Vertical Span

Piece
Support at Each

Section Edge

24'
250LB,
Type 1
Duty

Home
Depot 51751012170 3 64" $159.00

AL 5 124" Vertical Leg
Height

Extension Legs

24'
250LB,
Type 1
Duty

Home
Depot 51751012187 2 124" $119.00

AL 6 124" Angled Leg

Height
Extension

Triangulation

24'
250LB,
Type 1
Duty

Home
Depot 51751012187 2 124" $119.00

AL 7 113" C-Channel Trolley Track
Aluminum
C-Channel

ABC
Supply,

Inc. 51751012095 4
3" X 2" X 1/8" X

113" $228.12

AL 8 49" C-Channel Trolley Track
Aluminum
C-Channel

ABC
Supply,

Inc. 51751012095 4
3" X 2" X 1/8" X

49" $99.18
3/4" Plywood

W 1

5-Point End-Span
Fish Plate (2

Triangulation Points)
Hold Ladders

Together

3/4"
Marine
Grade

Hughes
Hardwoods - 4

3/4" X 13" X
28.5" $71.95

W 2

5-Point Fish Plate
(No Triangulation

Points)
Hold Ladders

Together

3/4"
Marine
Grade

Hughes
Hardwoods - 6 3/4" X 8" X 33" -

W 3

5-Point Quarter-
Span Fish Plate (2

Triangulation Points)
Hold Ladders

Together

3/4"
Marine
Grade

Hughes
Hardwoods - 4

3/4" X 8 X 23-
1/8" -

W 4

7-Point Mid-Span
Fish Plate (2

Triangulation Points)
Hold Ladders

Together

3/4"
Marine
Grade

Hughes
Hardwoods - 2 3/4" X 8" X 33" -

W 5
3-Point Fish Plate (1
Triangulation Point)

Hold Ladders
Together

3/4"
Marine
Grade

Hughes
Hardwoods - 4

3/4" X 8" X 16-
1/2" -

W 6
Dielectric Track

Support
Connect Tracks

to Ladders
3/4"

Agathis
Hughes

Hardwoods - 7
3/4" X 2" X 17-

1/2" -

W 7

Dielectric Track
Support Rigidity

Strips
Stiffen Up

Track Supports
3/4"

Agathis
Hughes

Hardwoods - 14
3/4" X 2 X 14-

1/2" $26.95

W 8
3/4" Wood Ladder

Width Shims
Make ladder

Widths Uniform
3/4"

Agathis
Hughes

Hardwoods - 14
3/4" X 2-1/2" X

15" -
Black ABS Plastic

ABS 1
1/4" Plastic Ladder

Width Shims
Make ladder

Widths Uniform
1/4" ABS

Sheet
Tap

Plastics - 12
1/4" X 2-1/2" X

15" $5.10

ABS 2 3/16" Insert Shims

Shim Inserts to
Snugly Fit

Inside Ladder
Rungs

1/4" ABS
Sheet

Tap
Plastics - 96

3/16" X 1-7/8'
X 5/8" $22.97

Schedule 40 White PVC Plastic

PVC 1 1/2" Couplers

Adapter
Between PVC

Pipe and Ladder
Rung

1/2" Pipe
Coupling

Home
Depot 49081137472 100 1/2" $5.00

PVC 2 1/2" Sleeve

Sleeve Between
Couplers for All-
Thread to Slide 1/2" Pipe

Home
Depot 24599050512 50 1/2" X 15-1/2" $10.00

 144

in

Hardware

H 1 5/8" All-Thread Rod
Connect Ladders
via Fish Plating Steel

Blue Collar
Supply - 48

 20-3/4" SAE
5/8"-13 $104.00

H 2 5/8" All-Thread Rod
Connect Truss
to Genie Lifts Steel

Blue Collar
Supply - 2

 24" SAE 5/8"-
13 $4.00

H 3 5/8" Washers Truss Assembly Steel
Blue Collar

Supply - 100 SAE 5/8" $15.00

H 4
5/8" Nylon Locking

Nuts Truss Assembly Steel
Blue Collar

Supply - 50 SAE 5/8" $15.00

H 5 5/8" Nuts Truss Assembly Steel
Blue Collar

Supply - 50 SAE 5/8" $15.00

H 6
5/8" Compression

Washers Truss Assembly Steel
Blue Collar

Supply - 50 SAE 5/8" $5.00

H 7
1" Coarse Threaded

Drywall Screws
Connect Ladder

Width Shims Steel
Blue Collar

Supply - 12 1" #6 $1.00

H 8
2" Coarse Thread
Drywall Screws

Connect Track
Supports to

Rigidity Strips Steel
Blue Collar

Supply - 21 2" #6 $1.00

H 9

1-1/4" Coarse
Thread Drywall

Screws

Connect
Dielectric Track

Supports
Together Steel

Blue Collar
Supply - 56 1-1/4" #6 $2.00

H 10
1" Phillips Head
Machine Screw

Connect
Dielectric Track

Support Steel
Blue Collar

Supply - 28 1" SAE 10-32 $2.00

H 11
10-32 Nylon Lock

Nut

Connect
Dielectric Track

Support Steel
Blue Collar

Supply - 28 SAE 10-32 $2.00

H 12 10-32 Washer

Connect
Dielectric Track

Support Steel
Blue Collar

Supply - 28 SAE 10-32 $2.00

H 13 Tensioning Rope

Keep Truss
Stable when

Raised Nylon
Home
Depot - 4 1/2" X 100' $40.00

H 14 Carabineer
Connects Rope

Pieces Steel
Home
Depot - 8 4" $24.00

H 15

1-1/4" Coarse
Thread Drywall

Screws
Secure Cable

Loop
Blue Collar

28 1-1/4" #6 $2.00 s Steel Supply -
Secur

Electrical Plugs
to Truss Nylon McMaster 14 5/16" $4.00

e

H 16 Cable Loops

H 17 Tie Straps stic 4

Secure
Electrical Plugs

to Truss Pla
Home
Depot - 1 4" $2.00

Electrical

E
Male and Female

n Cord E
E

Orange
Extension

d
Home

 1 Extensio nds Truss Joints Cor

Connect C-
Channel

lectrically at

25'

Depot - 4 24" $20.00
 883 Totals $1,921

 145

AA VVI C AA

ompany Contact Information

PPPPEENNDDIIXX III,, CCOOMMPPAANNYY

C

CCOONNTTAACTT IINNFFOORRMM TTIIOONN

Company
Name Postal Address Internet Address Tele onph e

Number Account #

Hughes
Hardwoods

11

R gheshardwoods.com 916 638 8658 -

441 Sunrise
Gold Circle,

ancho Cordova,
CA 95742

hu

Home Depot

80

S edepot.com 916 381 3181 -

00 Folsom
Blvd.

acramento, CA hom

95826

Tap Plastics,
4

S tapplastics.com 916 429 9551 - Store #27

506 Florin
Road,

acramento, CA
95841

ABC 27
Sac 4 7Supply, Inc.

10 R Street,
ramento, CA

95816
- 916 52 000 -

Radio
S Blv

Sac ra 4 4hack, Store
#3903

5650 Folsom
d.

ramento, CA
95819

dioshack.com 916 52 632 -

Jones Spring 14
Wilde springsfast.com 859 581 7600 - 0 South Street,

r KY 41071

Grainger
2

CA
grainger.com 408 286 5373 80-928-

202-3

261 Ringwood
Ave. San Jose,

 95131

M
9
Blvd. S m m 6 5 0cMaster-

Carr

630 Norwalk
anta Fe

Springs, CA
90670

cmaster.co 562 92 911 1 515500

HSC
Electronics

48
Sacram

Supply

37 Amber Ln.
ento, CA

95841
- 916 338 2545 -

Bark
Bruening - - 916 5 624 633 -

RC Country

601

Sacra 7 5

1 Folsom
Blvd.
mento, CA
95819

- 916 31 868 -

 146

AA VV RRII AA PP RR

scaffolding system were considered for the
hor tal span of e mo ile truss The

facility in West Sacramento.

PPPPEENNDDIIXX IIIIII,, IINNDDUUSSTT AALL SSCC FFFFOOLLDDIINNGG IICCTTUU EESS

The vertical components of an industrial

izon th b . se
components were evaluated at the Sun Rental

FIGURE 9-A8, MATT STANDING AT CENTER OF SCAFFOLDING SPAN

FIGURE 10-A8, DEFLECTION FROM LOAD AT CENTER OF SCAFFOLDING SPAN

 147

FIGURE 11-A8, INDIVID PIECE UAL SCAFFOLDING

FIGURE 12-A8, SC EMBLED ETAIL AFFOLDING CONNECTION PRE-ASS CORNER D

FIG TW IEC OG HURE 13-A8, O SCAFOLDING P ES BOLTED T ET ER

 148

AAPPPPEENNDDIIXX IIXX,, EE RRIICCAALL SSCCHHEEMMAATTIICCSS LLEECCTT

FIGURE 14-A9, LIFTING MECHANISM CONTROL ELECTRICAL CIRCUIT

 149

FIGURE 15-A9, ELECTRONIC TIMER DELAY CIRCUIT

 150

Appendix A: Mechanical Drawings

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

Appendix B: Parts List

cription Supplier Part # Qty
Purchased Parts

Part Des $ Total
Drive Motor Pittman Lo-Cog

tor, 24volt,
5.5:1

Pittman GM9236S
026

1 $117.1
2

$117.12
Gearmo

6

Gear Box dual output, right
le, 1:1

McMaster 6456K23 1 $169.7
8

$169.78
ang

Gear Box dual output, right
:1 alternate
part

Boston
Gear

RA631 0 $256.9
0

$0.00
angle, 1

Axles Hardened Stainless
Shaft, od
 length 18"

McMaster 6253K33 2 $26.74 $53.48
Steel

0.375",

Axle Bearings ABEC-1, double
id 0.25", od
 bearing no.
R6

McMaster 60355K35 6 $4.80 $28.80
sealed,
0.625",

Axle Collars One-piece Clamp-on
ollar, 303

s Steel, 3/8"
 7/8" OD

McMaster 6435K33 6 $4.95 $29.70
Shaft C

Stainles
bore,

Brake Bearing ABEC-1, double
id 0.25", od
 bearing no.
R4

McMaster 60355K33 4 $4.77 $19.08
sealed,
0.625",

Alignment Delrin
Bearings stainless

 bearing,
 steel balls,
", od 1.375"

McMaster 6455K29 4 $5.28 $21.12

id 0.375

Wheels Neoprene drive
durometer

idth
5"

McMaster 2474K31 4 $26.62 $106.48
roller,

80A, od 1.25", w
1.25, bore 0.37

Drive Shaft Stainless Steel
ft
75"

McMaster 61005K42 2 $31.12 $62.24
Coupler clamp-on sha

coupler, bore 0.3

Motor Shaft Stainless Steel
ft
75"

McMaster 61005K63 1 $32.41 $32.41
Coupler clamp-on sha

coupler, bore 0.3
x 0.25"

Brake Gear sub-fractional hp DC
olt,

McMaster 6409K22 2 $42.03 $84.06
Motor gearmotor, 24 v

50 in-lb, 4 rpm

Brake Spring Stainless Steel
90
20

McMaster 9287K103 2 $8.60 $17.20
torsion spring,
deg, CCW/CW,

in-lb

 163

Brake Arm Stainless Steel
Snap Rings External Retai

Ring for 1/4" s

ning
haft

dia.

McMaster 91590A11
3

1 $7.00 $7.00

Brake switch Washdown
ure Snap-

witch Spdt,
d Lever

McMaster 8085T13 4 $5.43 $21.72
Subminiat
Acting S

Rigi
Coating for "Plasti
brake arm co

Dip" plastic
ating

Ace
Hardware

N/A 1 $7.00 $7.00

Alignment self-lock
Shoulder Bolt steel sh

ing stainless
oulder bolt,
75", length

McMaster 91327A15
6

4 $5.11 $20.44

dia 0.3
0.75"

Brushes Bronze strip brush,
ed channel

Gordon
Brush

sample 2 $0.00 $0.00
Galvaniz

Batteries - 12v 12v se
sealed type A512
A512/1.2s equ

aled type
/1.2s or
ivalent

Sonnensch
ein

A512/1.2
S

2 $15.00 $30.00

Electronic Box Sealed electrical box
 metric
uts 7.1" x

" x 2.4"

Fibox PCM150/6
0T

1 $30.00 $30.00
with

knocko
5.1

Electrical Wire Cord G
Grips Size, Cor

rip, M-16
e Dia Range
"-0.39"

McMaster 7310K32 3 $3.68 $11.04

0.18

Plastic Tape Adhesive backed
ic strip to
ower supply

Saint-
Gobain

CHR 2302 1 $0.00 $0.00
sample plast

isolate p

Aluminum Tape Adhes
sample alumin

ive backed
um strip to
ct power

Saint-
Gobain

CHR
26020

1 $0.00 $0.00

condu

Total $868.6
7

 164

Fabricated Parts
Part Description Drawing Qty Material

Body Main trolley body Trolley Body.dft 1 Al plate
0.25"

Mounting Plate Detector
ting plate

mounting
plate.dft

1 Al plate
0.25" moun

Mounting Plate Space
Block Bod

r between
y and

ting Plate

mounting plate
block.dft

4 Al bar 1" x
0.25"

Moun
Motor Bracket Drive motor

acket
motor

bracket.dft
1 Al L-bracket

0.25" br
Gear Box Block u
Platform

nder gear
box

gear
platform.dft

1 Al block

Front Axle Leg Front axle
, free spinsupport

front axle
leg.dft

2 Al bar 1" x
0.5"

Rear Axle Leg Rear axle
rt, driven
heels

rear axle leg.dft 2 Al bar 1" x
1" suppo

w
Front Axle Axle length front axle.dft 1 SS bar 3/8"

dia
Rear Axle Axle length rear axle.dft 2 SS bar 3/8"

dia
Brush Block Delrin brush

holder
brush block.dft 2 Delrin bar 1"

x 1"
Brush Arm Delrin mount for

y
brush arm.dft 2 Delrin bar 1"

x 3" brush assembl
Banana Plug Delrin piece fo

Plate aux banana plug
r banana plug

plate.dft
2 Delrin plate

0.25"
Switch Block Delrin block

holding battery
switch block.dft 1 Delrin bar

1.5" x 1.5"
switch

Guide Block attachment block

guide block.dft 4 Al bar 1" x
0.5" for alignment

wheels
Guide Leg forked leg

holding
alignment wheels

guide leg.dft 4 Al bar 1.5" x
1"

Brake Arm Brake arm wi
rubber suface

th brake arm.dft 2 Al bar 1.5" x
1"

Spring Shaft Shaft between
 arm and
ke arm

spring shaft.dft 2 Al rod 0.75"
switch

bra
Switch Arm Inner arm on

to actuate
witches

switch arm.dft 2 Al bar 0.5" x
0.25" brakes

the s

Spring Retainers Piece hold brake
 in place

spring
retainer.dft

4 Al plate
0.25" spring

Brake Brace Brace
Base on bac

 mounted
k of brake

brake brace
base.dft

2 Al bar 1" x
0.5"

 165

motor

Brake Brace Arm Link connecting
e braces
ether

built to fit 2 Al bar 0.5" x
0.25" brak

tog

Brake Brace Connec
Connector to fix b

ting piece
race arms
 body

built to fit 1 Al bar 1" x
0.25"

to

Brake Channel br
Left suppo

acket
rting the
 brake

left front
channel.dft

1 Al Channel
4" x 1"

left
Brake Channel br

Right suppo
acket
rting the
t brake

right front
channel.dft

1 Al Channel
4" x 1"

righ

 166

Appendix C: Electrical Schematic

 167

 168

Appendix D: Trolley Opcodes

0xA0 // LBDS System
0xA1 // Trolley System

eturn to user
s -> data/message to follow

0xB0 // Sending drive motor duty cycle
_ON 0xB1 // Brakes are fully actuated
_OFF 0xB2 // Brakes are fully open
ABLE 0xB3 // Power to detector enabled

SABLE 0xB4 // Power to detector enabled
in LOSING 0xB5 // Closing TCP connection

l ands -> Trolley is Rear Wheel Drive
RWARD 0xC0 // Step the trolley forward
CKWARD 0xC1 // Step the trolley backward

ORWARD 0xC2 // Continuously move Forward
ACKWARD 0xC3 // Continuously move Backward

0xC4 // Engage trolley brakes
E 0xC5 // Disengage trolley brakes
P 0xC6 // Speed up the trolley
OWN 0xC7 // Slow down the trolley

0xC8 // Stop trolley motion
OR_POWER_ON 0xC9 // Turn on power to detector
OR_POWER_OFF 0xCA // Turn off power to detector
ONN 0xCB // Close the TCP/IP Conn

 0xE0 // Communications established
L 0xE1 // Communication failure

in CP_FB 0xE2 // DHCP address with fallbacks
CP_NFB 0xE3 // DHCP address without fallbacks
FAIL 0xE4 // Brakes not working properly
FAIL 0xE5 // Drive motor not responding

// System Types
 #define TYPE_LBDS
 #define TYPE_TRLY

 // Trolley Messages to r
 // Trolley Data Message
 #define TRM_SPEED
 #define TRM_BRAKES
 #define TRM_BRAKES
 #define TRM_DET_EN
 #define TRM_DET_DI
 #def e TRM_CONN_C

 // Tro ley control comm
 #define TRC_STEP_FO
 #define TRC_STEP_BA
 #define TRC_CONT_F
 #define TRC_CONT_B
 #define TRC_BRAKE
 #define TRC_UNBRAK
 #define TRC_SPEED_U
 #define TRC_SPEED_D
 #define TRC_STOP
 #define TRC_DETECT
 #define TRC_DETECT
 #define TRC_CLOSE_C

 // Trolley errors
 #define TRE_NET_OK
 #define TRE_NET_FAI
 #def e TRE_NET_DH
 #define TRE_NET_DH
 #define TRE_BRAKE_
 #define TRE_MOTOR_

 169

Appendix E: Trolley Operator Control Program

r Stephen S. Nestinger & Matt Campbell

e 2004
e 18, 2006

a ontrol Software v. 1.1.0

Readme

Autho s: David Ko &

Creat d: Sept. 24,
Updat d: September

GTK b sed Trolley C

 170

Header files

callbacks.h
e H_
n H_

u > // Required for GTK
u // For printf

f // Defined during compilation
n rintf(x) // Used for debugging purposes

t _Quit(void);

m (short int message);

 (GtkWidget *widget,
 GdkEventKey *event,

 gpointer data);

_ te (GtkMenuItem *menuitem,
 gpointer user_data);

_ te (GtkMenuItem *menuitem,
 gpointer user_data);

s e (GtkMenuItem *menuitem,
 gpointer user_data);

n rd_button_pressed (GtkButton *button,
 gpointer user_data);

n rd_button_released (GtkButton *button,
 gpointer user_data);

n ard_button_pressed (GtkButton *button,
 gpointer user_data);

n ard_button_released (GtkButton *button,
 gpointer user_data);

n ward_button_pressed (GtkButton *button,
 gpointer user_data);

n ward_button_released (GtkButton *button,
 gpointer user_data);

#ifnd f _CALLBACKS_
#defi e _CALLBACKS_

#incl de <gtk/gtk.h
#incl de <stdio.h>

#ifde DEBUG
#defi e DEBUG1(x) p
#else
#define DEBUG1 //
#endif

void rolleyControl

void
send_ essage

void
key_press_event

void
about button_activa

void
start server_activa

void
stop_ erver_activat

void
on_co tinuous_forwa

void
on_co tinuous_forwa

void
on_co tinuous_backw

void
on_co tinuous_backw

void
on_si gle_step_back

void
on_si gle_step_back

void
on_single_step_forward_button_pressed (GtkButton *button,

 171

 gpointer user_data);

n ard_button_released (GtkButton *button,
 gpointer user_data);

o sed (GtkButton *button,
 gpointer user_data);

ton_pressed (GtkButton *button,
 gpointer user_data);

ton_released (GtkButton *button,
 gpointer user_data);

ton_pressed (GtkButton *button,
 gpointer user_data);

ton_released (GtkButton *button,
 gpointer user_data);

essed (GtkButton *button,
 gpointer user_data);

leased (GtkButton *button,
 gpointer user_data);

ressed (GtkButton *button,
 gpointer user_data);

eleased (GtkButton *button,
 gpointer user_data);

gle (GtkButton *button,
 gpointer user_data);

control.h

ate Big to Little Endian
ected
ude/sys/_endian.h>

 0xA0 // LBDS System
ystem
stem

void
on_si gle_step_forw

void
on_st p_button_pres

void
on_increase_speed_but

void
on_increase_speed_but

void
on_decrease_speed_but

void
on_decrease_speed_but

void
on_brake_on_button_pr

void
on_brake_on_button_re

void
on_brake_off_button_p

void
on_brake_off_button_r

void
on_detecpw_button_tog

#endif

#ifndef _CONTROL_H_
#define _CONTROL_H_
// included to transl
// Didn't work as exp
//#include </usr/incl

 // System Types
 #define TYPE_LBDS
 #define TYPE_TRLY 0xA1 // Trolley S
 #define TYPE_SERV 0xA2 // Trolley Sy

 // Trolley Data Messages -> data/message to follow

 172

 #define TRM_SPEED 0xB0 // Sending drive motor duty

 fully actuated
 fully open
etector enabled
etector disable

l Drive
rolley forward
rolley backward
y move the trolley

y move the trolley

lley brakes
trolley brakes
he trolley
the trolley
y motion

#define TRC_DETECTOR_POWER_ON 0xC9 // Turn on power to detector
 #define TRC_DETECTOR_POWER_OFF 0xCA // Turn off power to detector
 #define TRC_CLOSE_CONN

 0xE0 // Communications established
 0xE1 // Communication failure
FB 0xE2 // DHCP address with fallbacks
_NFB 0xE3 // DHCP address without

fallbacks
#define TRE_BRAKE_FAIL 0xE4 // Brakes not working properly

 0xE5 // Drive motor not responding

rn char *MSG_A[];
ern char *MSG_B[];

ar *MSG_C[];
ar *MSG_E[];

icons.h

 * CF_xpm[] = {
",
e",
FFFFF",

c #88CEFF",
 c #3A5CFF",

 c #7CC9FF",

 c #7CBFFF",

 c #2133FF",

cycle
 // Trolley Messages to return to user
 #define TRM_BRAKES_ON 0xB1 // Brakes are
 #define TRM_BRAKES_OFF 0xB2 // Brakes are
 #define TRM_DET_ENABLE 0xB3 // Power to d
 #define TRM_DET_DISABLE 0xB4 // Power to d

 // Trolley control commands -> Trolley is Rear Whee
 #define TRC_STEP_FORWARD 0xC0 // Step the t
 #define TRC_STEP_BACKWARD 0xC1 // Step the t
 #define TRC_CONT_FORWARD 0xC2 // Continousl
Forward
 #define TRC_CONT_BACKWARD 0xC3 // Continousl
Backward
 #define TRC_BRAKE 0xC4 // Engage tro
 #define TRC_UNBRAKE 0xC5 // Disengage
 #define TRC_SPEED_UP 0xC6 // Speed up t
 #define TRC_SPEED_DOWN 0xC7 // Slow down
 #define TRC_STOP 0xC8 // Stop trolle

 0xCB

 // Trolley errors
#define TRE_NET_OK

 #define TRE_NET_FAIL
 #define TRE_NET_DHCP_

P #define TRE_NET_DHC

 #define TRE_MOTOR_FAIL

 exte

xt e
 extern ch
 extern ch

#endif

/* XPM */
static char
"21 22 68 1
" c Non
". c #F
"+
"@
"# c #92E1FF",
"$
"% c #3753FF",
"& c #E5EEFF",
"*
"= c #1B2EFF",
"- c #2C46FF",
"; c #1727FF",
"> c #2D45FF",
", c #2A45FF",
"' c #2239FF",
")

 173

"! c #2032FF",
"~ c #101BF0",
"{ c #080D79",
"] c #1D2EFF",
 c #1622FF",

"b c #253AFF",

#1321FF",
 #131EFF",
#101CF5",

"h c #101BF1",
"i c #020324",
"j c #070B61",
"k c #0B139D",
"l c #0D16BE",
"m c #0E19D1",
"n c #0F19DD",
"o c #0F1AE5",
"p c #0F1AE6",
"q c #0B13A3",
"r c #02021C",
"s c #070B5F",
"t c #0F19DA",
"u c #010426",
"v c #0D15B5",
"w c #010324",
"x c #080D78",
"y c #030531",
"z c #010111",
"A c #070B5C",
"B c #030635",
"C c #00010F",
" ",
" ",
" . ",
" .+@ ",
" .#$%&&..... ",
" .#*==-;-;-;> ",
" .#*,'=)!)!)~{ ",
" .#*,'];^;^/~/(",
" .#*,']_:;<~~[}| ",
" .#*,']_:1<<~23}4 ",
" .#*,']_:1<<~~25}4 ",
" 678,']_:1<~<~290}4 ",

"^
"/ c #121DEE",
"(c #030636",
 c #1726FF", "_

": c #1421FF",
"< c #101CF7",
"[c #101BED",
"} c #091086",
"| c #020428",
"1 c #111DFF",
"2 c #0F1AE1",
"3 c #0F19DF",
"4 c #010427",
"5 c #0E19D8",
 c #74B6FF", "6

"7 c #83D0FF",
"8 c #77B9FF",
 c #0E18D6", "9

"0 c #0E18D7",
"a c #253DFF",

"c c #1828FF",
 c #1624FF", "d

"e c
 c"f

"g c

 174

" abcdefgh[
 ijklmn2

~~~290}4  ", 
op~299q}4  ", 

"     rsklmn299qq}}4  ", 

, 
 
 

 ", 

c #7CC9FF", 

c #7CBFFF", 
c #080D79", 

c #2032FF", 

19DF", 

c #0E19D8", 
c #0E18D7", 

c #74B6FF", 
c #101BF1", 
c #101CF5", 

" 
"    rsklmn2o299qq}4  ", 

"      rsklmtqqq}}}u  ", 
"       rsklvq}}}}}w  "
"        rskx(y(y(yz  ",
"         rAB         ",
"          C         
"                     "}; 
/* XPM */ 
static char * CB_xpm[] = { 
"21 22 68 1", 
"  c None", 
". c #FFFFFF", 
"+ c #3A5CFF", 
"@ c #88CEFF", 
"# c #E5EEFF", 
"$ c #3753FF", 
"% 
"& c #92E1FF", 
"* c #2D45FF", 
"= c #1727FF", 
"- c #2C46FF", 
"; c #1B2EFF", 
"> 
", 
"' c #101BF0", 
") c #2133FF", 
"! 
"~ c #2239FF", 
"{ c #2A45FF", 
"] c #030636", 
"^ c #121DEE", 
"/ c #1622FF", 
"( c #1D2EFF", 
"_ c #020428", 
": c #091086", 
"< c #101BED", 
"[ c #101CF7", 
"} c #1421FF", 
"| c #1726FF", 
"1 c #010427", 
"2 c #0F
"3 c #0F1AE1", 
"4 c #111DFF", 
"5 
"6 
"7 c #0E18D6", 
"8 c #77B9FF", 
"9 c #83D0FF", 
"0 
"a 
"b 
"c c #131EFF", 
"d c #1321FF", 
"e c #1624FF", 
"f c #1828FF", 
"g c #253AFF", 
"h c #253DFF", 
"i c #0B13A3", 
"j c #0F1AE6", 
"k c #0F1AE5", 
"l c #0F19DD", 

 175



"m c #0E19D1", 
"n c #0D16BE", 

c #0B139D", 
 c #070B61", 

c #020324", 

c #010426", 

30531", 

c #030635", 
 c #070B5C", 
 c #00010F", 

                ", 

       +@.         ", 

]^'^/=/=(~{>&.     ", 
 _:<''[=}|(~{>&.    ", 
 1:23'[[4}|(~{>&.   ", 

3''[[4}|(~{>&.  ", 

1:i773'jk3lmnopq   ", 

 

"  v:::::iwnors       ", 
 xy]y]y]zors        ", 

    ABs         ", 

XPM */ 

 c #030635", 
  c #040846", 

"@  c #090E82", 

 c #74B4FF", 

 c #0B14A2", 
  c #0D16C0", 

c #0E19D1", 

 c #395AFF", 

 c #060A59", 
  c #0A1192", 

c #0E17BD", 

"o 
"p
"q 
"r c #070B5F", 
"s c #02021C", 
"t 
"u c #0F19DA", 
"v c #010324", 
"w c #0D15B5", 
"x c #010111", 
"y c #0
"z c #080D78", 
"A 
"B
"C
"     
"                     ", 
"          .          ", 
"  
"  .....##$%&.        ", 
"  *=-=-=-;;>&.       ", 
"  ,')!)!);~{>&.      ", 
"  
" 
" 
"  1:5
"  1:673'['[4}|(~{890 ", 
"  1:673'''<abcdefgh  ", 
"  
"  1:ii773k3lmnors    ", 
"  1::ii773lmnors     ",
"  t:::iiiumnors      ", 

" 
"     
"          C          ", 
"                     "}; 
/* 
static char * DN_xpm[] = { 
"24 24 142 2", 
"   c None", 
". 
"+

"#  c #0F18BB", 
"$  c #2239FF", 
"% 
"&  c #8EDBFF", 
"*  c #E4F8FF", 
"=  c #080D70", 
"- 
";
">  
",  c #1A2CFB", 
"'  c #324DFF", 
") 
"!  c #BDC9FF", 
"~  c #03052E", 
"{ 
"]
"^  
"/  c #1829E8", 

 176



"(  c #4A75FD", 
"_  c #7EC2FF", 

 c #080D71", 
"}  c #0A108B", 

c #0C15B2", 

 c #4F7EFF", 

 c #020427", 
  c #060A54", 

c #0A118D", 

 c #192BEB", 

 c #E3F6FF", 
  c #0A1088", 

c #0C15B0", 

 c #253EFF", 

"k  c #79C0FF", 
 c #A9DDFF", 
  c #DEF1FF", 

c #03042B", 

 c #1A2DED", 

 c #BFEBFF", 
  c #7682B8", 

"v  c #091086", 

 c #1626E2", 

 c #7CBFFF", 
  c #A6E3FF", 

c #E6F8FF", 

"G  c #0A1295", 

 c #1B2EEF", 
  c #5686FD", 
  c #83C9FF", 

c #4D78D0", 

 c #1524E1", 

"R  c #7FC3FF", 
 c #9DE2FF", 
  c #EDFAFF", 

c #020322", 

":  c #B8E8FF", 
"<  c #E0F4FE", 
"[ 

"|  
"1  c #0E19CA", 
"2  c #1B2EFD", 
"3 
"4  c #5F93FF", 
"5  c #CADCFF", 
"6 
"7
"8  
"9  c #0C15B4", 
"0  c #0E18CA", 
"a 
"b  c #507DFC", 
"c  c #BDE9FF", 
"d 
"e
"f  
"g  c #0F19CA", 
"h  c #1727E5", 
"i 
"j  c #3D61FF", 

"l 
"m
"n  
"o  c #0A1191", 
"p  c #0C15B6", 
"q 
"r  c #5382FC", 
"s  c #80C5FF", 
"t 
"u

"w  c #0C15AF", 
"x  c #0F19C9", 
"y 
"z  c #263FFF", 
"A  c #3E64FF", 
"B 
"C
"D  
"E  c #030327", 
"F  c #070B5C", 

"H  c #0D15B7", 
"I  c #0E18CB", 
"J 
"K
"L
"M  
"N  c #0C15AE", 
"O  c #0E19C8", 
"P 
"Q  c #3A5EFF", 

"S 
"T
"U  

 177



"V  c #070B5F", 
"W  c #0B1298", 
"X  c #0D16B8", 

 c #5687FF", 
. c #446ADE", 

".. c #0D17C6", 

 c #3859FF", 

 c #030324", 
. c #070B61", 

c #0B1297", 

">. c #2237F3", 

 c #3B5FFF", 
. c #77B7FF", 

c #97DFFF", 

 c #070C64", 

 c #1B2EE8", 
":. c #253DF8", 
. c #3D62FF", 

c #71AEFF", 

 c #070C67", 

. c #0D17C3", 
", 

c #3F65FF", 

c #04063D", 

c #0B13A0", 

c #D0F2FF", 
 c #060952", 
. c #080E77", 

 c #9BD9FF", 

 #5A7AB0", 
            ", 

                     ", 
            ", 

                                          ", 
                  ", 

                                              ", 
                                               ", 

"    . + @ # $ % & *           = - ; > , ' ) !   ", 

"Y  c #0E18CC", 
"Z  c #1B2EF0", 
"` 
" 

"+. c #1524E0", 
"@. c #243CFF", 
"#.
"$. c #92E1FF", 
"%. c #F6FCFF", 
"&.
"*
"=. 
"-. c #0D16B9", 
";. c #101BD6", 

",. c #1E31E7", 
"'. c #233AFB", 
").
"!
"~. 
"{. c #F1FBFF", 
"]. c #03042C", 
"^.
"/. c #0D17C4", 
"(. c #111ED9", 
"_.

"<
"[. 
"}. c #9BDEFF", 
"|. c #040533", 
"1.
"2. c #0B139E", 
"3
"4. c #1C2FE8
"5. 
"6. c #6CA8FF", 
"7. c #9DDCFF", 
"8. c #D9F5FF", 
"9. 
"0. c #080C6B", 
"a. 
"b. c #304CDB", 
"c. c #69A2FF", 
"d. c #9DDBFF", 
"e. 
"f.
"g
"h. c #476EC3", 
"i.
"j. c #CBF1FF", 
"k. c
"                                    
"                           
"                                    
"      
"                              
"  
" 

 178



"    ~ { ] ^ / ( _ : <       [ } | 1 / 2 3 4 5   ", 
"    6 7 8 9 0 a b _ c d   = e f g h i j k l m   ", 
     n { o p 0 q r s t u v w  D     ", 

M N O P z Q R S T       ", 
  ...+.@.#._ $.%.        ", 
>.,.+.'.).!.~.{.          ", 

W /.(._.:.<.[.}.*             ", 
.3.4.5.6.7.8.              ", 
0.a.b.c.d.e.                ", 

                ", 
                 ", 

                         ", 
                                 ", 
                                  ", 

               ", 
                "}; 

/* XPM */ 
 DPW_xpm[] = { 
 

    

"      ...  ...  ...     ", 
"     ....  ...  ....    ", 

   .
   ..     ...     ..   ", 

   ", 
    .......        ", 

       ", 
        "}; 

atic char * OFF_xpm[] = { 

"  c None", 
#990505", 

c #800404", 

c #FF0E0E", 

" x y z A B C
"        E F G H I J K L 
"          U V W X Y Z `

.;."            &.*.=.-
             ].^." 

"                |.1.2
                 9." 

"                    f.g.h.i.j.  
      "                  *.k.   

                      " 
"               

            "  
"                                 

         "                       
 

static char *
4 24 2 1","2

"  c None", 
". c #000000", 

                   ", " 
"           ...          ", 
"           ...          ", 
"           ...          ", 
"        .  ...  .       ", 
      ..  ...  ..      ", " 

"     ...   ...   ...    ", 
..    ...    ...   ", " 

" 
"   ...     ...     ...  ", 
"   ...     ...     ...  ", 
"   ...     ...     ...  ", 
  ...             ...  ", " 

"    ...           ....  ", 
.           ...   ", "    ..

"    ....         ....   ", 
"     ....       ....    ", 

  ", "      .............   
 ...........   "      

    " 
"                 

  "              
XPM */ /* 

st
"24 24 56 1", 

". c 
"+ c #FF7A7A", 
"@ c #BD0606", 
"# c #8C0404", 
"$ c #7E0404", 
"% 
"& c #320101", 
"* c #CC0707", 
"= c #E20707", 
"- 
"; c #FF0D0D", 
"> c #FF0B0B", 
", c #520202", 
"' c #A60505", 

 179



") c #F80909", 
"! c #240101", 
"~ c #BA0606", 
"{ c #180000", 
"] c #970505", 
"^ c #F20707", 
"/ c #F40909", 
"( c #D80707", 
"_ c #150000", 
": c #EA0707", 
"< c #CE0707", 
 c #9F0505", 

c #360101", 
 c #000000", 

"8 c #1B0000", 
"9 c #BC0505", 
 c #F00707", 

"a c #EC0707", 

>>>>>>>>>>>>>>>>>>>>)!", 
+>)))))))))))))))))))~{", 

|^488|^^^5<[}", 
[}", 
<[}", 
[}", 
}", 

<[}", 
"]+>)^^^^467|^468|^^^5<[}", 

"[
"} c #140000", 
"| c #A10404", 
"1 c #6C0303", 
"2 c #500202", 
"3 c #860303", 
"4 c #D70606", 
"5 c #E80707", 
"6 
"7

"0

"b c #E50707", 
"c c #E00707", 
"d c #C90707", 
 c #C10707", "e

"f c #BF0606", 
c #B80606", "g 

"h c #9A0505", 
"i c #FF0909", 
"j c #D30707", 
"k c #A10505", 
"l c #880404", 
"m c #230101", 
"n c #750404", 
"o c #0A0000", 
"p c #040000", 
"q c #030000", 
".+@#$$$$$$$$$$$$$$$$$$%&", 
"+++++++++++++++++++++++*", 

;;;;;;;;;;;;;;;;;;;>,", "=+-
+"'

".
"]+>)^^^^^^^^^^^^^^^^/('_", 
"]+>)^^^^^^^^^^^^^^^^:<[}", 
+>)^^^^^^|12234^^^^5<[}", "]

"]+>)^^^^467
"]+>)^^^^171^^^4784^^5<

>)^^^^779^^^^873^^5"]+
"]+>)^^^|77^^^^^272^^5<
"]+>)^^^|77^^^^^272^^5<[
"]+>)^^^|77^^^^^272^^5<[}", 

[}", "]+>)^^^^779^^^^673^^5<
4^^5"]+>)^^^^173^^^478

"]+>)^^^^^^|22234^^^^5<[}", 
"]+>)^^^^^^^^^^^^^^^^5<[}", 

5*[}", "]+>)^^0^^^^^^^^^^^^0
"]+>)^abbbbbbbbbbbbbbcd[}", 
"]+>)=deffffffffffffffgh}", 
"]+ijk#lllllllllllllll#l}", 

 180



"mn!opqqqqqqqqqqqqqqqqqp7"}; 
/* XPM */ 
static char * ON_xpm[] = { 

"( c #35F643", 

c #30DC3B", 

c #32E53E", 

"h c #2FDA3B", 
 c #2DD138", 
 c #2CCD37", 

 c #29BD33", 

 c #0D3C10", 

 c #0E4412", 

"s c #000000", 

"u c #1D8824", 

"24 24 84 1", 
"  c None", 
". c #23A32C", 
"+ c #2ED63A", 
"@ c #27B531", 
"# c #229C2A", 
"$ c #209428", 
"% c #209528", 
"& c #145D19", 
"* c #35F342", 
"= c #3EFF4D", 
"- c #3CFF4B", 
"; c #3AFF48", 
"> c #39FF48", 
", c #39FF47", 
"' c #29BC33", 
") c #2BC636", 
"! c #37FE45", 
"~ c #38FF46", 
"{ c #38FF45", 
"] c #1A7720", 
"^ c #25AA2E", 
"/ c #33EC40", 

"_ c #35F542", 
": c #34F241", 
"< c #34EF41", 
"[ c #32E73F", 
"} c #2DCF38", 
"| c #114F15", 
"1 c #32E93F", 
"2 c #33ED40", 
"3 c #33EA3F", 
"4 c #31E43E", 
"5 c #31E13D", 
"6 c #30DF3C", 
"7 
"8 c #27B431", 
"9 c #0E4111", 
"0 c #23A22C", 
"a 
"b c #2ED439", 
"c c #2DD239", 
"d c #2DCE38", 
"e c #2AC234", 
"f c #0D3D10", 
"g c #33EB3F", 

"i
"j
"k c #2CCA36", 
"l
"m c #24A62D", 
"n
"o c #2BC936", 
"p c #18721E", 
"q
"r c #229F2A", 

"t c #27B630", 

 181



"v c #2FD93B", 
"w c #2CCC37", 
"x c #31E23D", 
"y c #2ED53A", 
"z c #2CCB37", 
"A c #2BC736", 
"B c #2BC535", 
"C c #28BB32", 
"D c #28B732", 

c #219A29", 

 c #1F8E26", 

$$$$$$$$$%&", 
"*=-;>>>>>>>>>>>>>>>>>>,'", 
")!;,~{{{{{{{{{{{{{{{{!*]", 

".12345666666666666667}89", 
"01/a7bccccccccccccccde^f", 

1g4h}jjjjjpsstjjjjjolmn", 

", 

1g4v}wjjjjjjjjjjjjwo'mn", 

"# c #92E1FF", 

 c #E5EEFF", 

"> c #2D45FF", 

"E c #27B631", 
"F c #27B330", 
"G c #23A42C", 
"H c #2FDB3B", 
"I c #29BF34", 
"J c #24A72D", 
"K 
"L c #0C3B10", 
"M c #114E15", 
"N
"O c #092B0B", 
"P c #061C07", 
"Q c #051A07", 
"R c #051906", 
"S c #010902", 
".+@#$$$$$$$$$

"^/(_*:::::::::::::::<[}|", 

"01g4hijjjjjjjjjjjjjjklmn", 
"01g4h}jjjjjjjjjjjjjjolmn", 
"01g4h}jjjjpqqqqrjjjjolmn", 
"0
"01g4h}jjjjjussjjjjjjolmn", 
"01g4h}jjjjjussjjjjjjolmn", 
"01g4h}jjjjjussjjjjjjolmn", 
"01g4h}jjjjjussjjjjjjolmn", 
"01g4h}jjjjjussjjjjjjolmn", 
"01g4h}jjjjjussjjjjjjolmn", 
"01g4h}jjjjjussjjjjjjolmn
"01g4h}jjjjjpsstjjjjjolmn", 
"01g4h}jjjjpqqqqrjjjjolmn", 
"0
"01gxyzAAAAAAAAAAAAAABCmn", 
"011h)CDEEEEEEEEEEEEEEFGn", 
"0aHIJ#KKKKKKKKKKKKKKK#KL", 
"MN|OPQRRRRRRRRRRRRRRRQPS"}; 
/* XPM */ 
static char * SL_xpm[] = { 
"21 22 72 1", 
"  c None", 
". c #FFFFFF", 
"+ c #88CEFF", 
"@ c #3A5CFF", 

"$ c #7CC9FF", 
"% c #3753FF", 
"&
"* c #7CBFFF", 
"= c #1B2EFF", 
"- c #2C46FF", 
"; c #4B75FF", 

 182



", c #2A45FF", 
"' c #2239FF", 

c #2032FF", 

"^ c #1622FF", 

 c #1726FF", 

 c #0E19D8", 
"6 c #0C14A5", 

 c #020324", 
"k c #070B61", 

 c #0D15B5", 
"z c #091086", 

c #070B5C", 

        .+@         ", 
"        .#$% &.. &.. ", 

") c #2133FF", 
"! 
"~ c #080D79", 
"{ c #1D2EFF", 
"] c #1727FF", 

"/ c #121DEE", 
"( c #030636", 
"_
": c #1421FF", 
"< c #101BED", 
"[ c #0E15B6", 
"} c #020428", 
"| c #111DFF", 
"1 c #0F19DF", 
"2 c #0C14A9", 
"3 c #010427", 
"4 c #101CF7", 
"5

"7 c #74B6FF", 
"8 c #83D0FF", 
"9 c #77B9FF", 
"0 c #101BF0", 
"a c #0E18D7", 
"b c #253DFF", 
"c c #253AFF", 
"d c #1828FF", 
"e c #1624FF", 
"f c #1321FF", 
"g c #131EFF", 
"h c #101CF5", 
"i c #101BF1", 
"j

"l c #0B139D", 
"m c #0D16BE", 
"n c #0E19D1", 
"o c #0F19DD", 
"p c #0F1AE1", 
"q c #0F1AE5", 
"r c #0F1AE6", 
"s c #02021C", 
"t c #070B5F", 
"u c #0E18D6", 
"v c #0F19DA", 
"w c #0B13A3", 
"x c #010426", 
"y

"A c #010324", 
"B c #080D78", 
"C c #030531", 
"D c #010111", 
"E 
"F c #030635", 
"G c #00010F", 
"                     ", 
"                     ", 
"          .          ", 
" 

 183



"       .#*== -;> -;> ", 
"      .#*,'= )!~ )!~ ", 
"     .#*,'{] ^/( ^/( ", 

3 a63 ", 
 bcdefghi<0 a63 a63 ", 

nop u63 u63 ", 

D ", 

 c #FFFFFF", 

"& c #92E1FF", 

 c #1B2EFF", 

, 

1DEE", 

 c #1727FF", 

D", 

4A9", 

 c #111DFF", 

"6 c #101CF7", 
"7 c #0E18D7", 

B6FF", 

 c #101CF5", 

"    .#*,'{_: <[} <[} ", 
"   .#*,'{_:| 123 123 ", 
"  .#*,'{_:|4 563 563 ", 
" 789,'{_:|40 a6
" 
"   jklmnopqr a63 a63 ", 
"    stlmnopq u63 u63 ", 
"     stlm
"      stlmnv wwx wwx ", 
"       stlmy wzA wzA ", 
"        stlB (CD (C
"         sEF         ", 
"          G          ", 
"                     "}; 
/* XPM */ 
static char * SR_xpm[] = { 
"21 22 72 1", 
"  c None", 
".
"+ c #3A5CFF", 
"@ c #88CEFF", 
"# c #E5EEFF", 
"$ c #3753FF", 
"% c #7CC9FF", 

"* c #2D45FF", 
"= c #4B75FF", 
"- c #2C46FF", 
";
"> c #7CBFFF", 
", c #080D79", 
"' c #2032FF", 
") c #2133FF"
"! c #2239FF", 
"~ c #2A45FF", 
"{ c #030636", 
"] c #12
"^ c #1622FF", 
"/
"( c #1D2EFF", 
"_ c #020428", 
": c #0E15B6", 
"< c #101BE
"[ c #1421FF", 
"} c #1726FF", 
"| c #010427", 
"1 c #0C1
"2 c #0F19DF", 
"3
"4 c #0C14A5", 
"5 c #0E19D8", 

"8 c #101BF0", 
"9 c #77B9FF", 
"0 c #83D0FF", 
"a c #74
"b c #101BF1", 
"c
"d c #131EFF", 
"e c #1321FF", 

 184



"f c #1624FF", 
"g c #1828FF", 

AE5", 

 c #0F19DD", 

, 

021C", 

 c #0B13A3", 
"x c #0F19DA", 

 

 c #00010F", 

     ", 

     ", 

|12 |12 3[}(!~>&.   ", 

   ", 

         G          ", 

 XPM */ 

, 

"h c #253AFF", 
"i c #253DFF", 
"j c #0F1AE6", 
"k c #0F1
"l c #0F1AE1", 
"m
"n c #0E19D1", 
"o c #0D16BE", 
"p c #0B139D", 
"q c #070B61"
"r c #020324", 
"s c #0E18D6", 
"t c #070B5F", 
"u c #02
"v c #010426", 
"w

"y c #010324", 
"z c #091086", 
"A c #0D15B5", 
"B c #010111", 
"C c #030531", 
"D c #080D78", 
"E c #030635",
"F c #070B5C", 
"G
"                     ", 
"                     ", 
"          .          ", 
"         +@.    
" ..# ..# $%&.        ", 
" *=- *=- ;;>&.       ", 
" ,') ,') ;!~>&.      ", 
" {]^ {]^ /(!~>&.
" _:< _:< [}(!~>&.    ", 
" 
" |45 |45 63[}(!~>&.  ", 
" |47 |47 863[}(!~90a ", 
" |47 |47 8<bcdefghi  ", 
" |47 |47 jklmnopqr
" |4s |4s klmnoptu    ", 
" |4s |4s lmnoptu     ", 
" vww vww xnoptu      ", 
" yzw yzw Aoptu       ", 
" BC{ BC{ Dptu        ", 
"         EFu         ", 
" 
"                     "}; 
/*
static char * STOP_xpm[] = { 
"21 22 96 2", 
"   c None", 
".  c #FFFFFF", 
"+  c #456FFF", 
"@  c #5284FF", 
"#  c #4F7EFF", 
"$  c #4974FF", 
"%  c #4873FF", 
"&  c #4771FF"
"*  c #1626FF", 
"=  c #426AFF", 
"-  c #4874FF", 

 185



";  c #446DFF", 
">  c #334EFF", 
",  c #1524FF", 
"'  c #0E19E8", 
")  c #395BFF", 

  c #2E47FF", 

, 

  c #283EFF", 
"8  c #2539FF", 
"9  c #2335FF", 

"b  c #0E17D2", 
"c  c #091093", 
"d  c #030638", 

 

"i  c #0B15BC", 

  c #050957", 

  c #090F8A", 

  c #1220FF", 

  c #0C16D2", 

  #142 F", 

  c #0C16C8", 

  
  
  
  
  c #0C16C6", 

"!  c #3E63FF", 
"~
"{  c #2C46FF", 
"]  c #2C45FF", 
"^  c #2B44FF", 
"/  c #1424FF", 
"(  c #1421FF", 
"_  c #101BF4", 
":  c #070E7F", 
"<  c #3759FF", 
"[  c #395CFF", 
"}  c #2A40FF", 
"|  c #273EFF"
"1  c #273CFF", 
"2  c #263BFF", 
"3  c #121FFF", 
"4  c #0A12A5", 
"5  c #060A62", 
"6  c #2A42FF", 
"7

"0  c #101BF8", 
"a  c #101BF0", 

"e  c #2439FF", 
"f  c #101BF6", 
"g  c #0E19EE",
"h  c #0D18D7", 

"j  c #08108C", 
"k  c #0D18D5", 
"l  c #0B15B6", 
"m  c #0D18DF", 
"n  c #0C16CB", 
"o  c #0B14B5", 
"p  c #000110", 
"q  c #101DFF", 
"r  c #0C16D4", 
"s
"t  c #3657FF", 
"u
"v  c #2940FF", 
"w
"x  c #0E19EC", 
"y
"z  c #09119B", 
"A  c #090F88", 
"B c 2F
"C  c #0C16D0", 
"D
"E  c #091199", 
"F c #091195", 
"G c #070C6E", 
"H c #0D17CB", 
"I c #0D17D0", 
"J

 186



"K  c #0A13B0", 
"L  c #0A12AA", 
"M  c #0A12A7", 
"N  c #060C68", 
  c #060B65", 

  c #00010F", 

  c #0D17C9", 

  c #090F8C", 

  c #04094C", 

  c #00000E", 

  c #010427", 

. c #000111", 

. c #000004", 

            , 
              ", 

     . @ # $ % % % % % % % % % % & *     ", 

     ) !      ", 
     < [ 3 3 ( _ 4 5     ", 
     < 6 0 0 a b c d     ", 
     < 6 g g g g h i j d     ", 
     . < 6 | e _ g g g g g g k l j d     ", 

     . < 6 | q _ g g g g r r n o s p     ", 

 v 6 w q _ x r r r r y z A s p     ", 
     q v B 3 q C D D D D D E F G s p     ", 

     R S T U V W X X X X X X X W X Y     ", 

                                         ", 
       ", 

                                         "}; 

atic char * UP_xpm[] = { 

 c None", 
  c #070B61", 

 

 

  c #304CDB", 

 

"O
"P  c #050955", 
"Q
"R  c #080F97", 
"S
"T  c #0B15B8", 
"U
"V  c #050A58", 
"W
"X  c #04084A", 
"Y
"Z  c #03063F", 
"`
" . c #000117", 
".
"+. c #00010E", 
"@
"                                          ", 
"                              "
"                            
"      . . . . . . . . . . . . . . . +     ", 
" 
"      . = - + ; > > > > > > > > = , '     ", 
"  .  ~ { ] ] ] ] ] ^ , / ( _ :
"  .  } | 1 2 3 3 3 
"  .  7 8 9 0 0 0 0 
"  .  | e f g g 
" 
"      . < 6 | e _ g g g g g m n o j p     ", 
" 
"      t < 6 | q _ g g g r r r n u s p     ", 
"      t
" 
"      H I ( q J K L M M M : : N O P Q     ", 
" 
"      Z d `  ...Q Q Q Q Q +.Q +.p Q @.    ", 
" 
"                                   
" 
/* XPM */ 
st
"24 24 142 2", 
"  
".
"+  c #5A7AB0", 
"@  c #060952", 
"#  c #080E77", 
"$  c #476EC3",
"%  c #9BD9FF", 
"&  c #CBF1FF", 
"*  c #04063D", 
"=  c #080C6B",
"-  c #0B13A0", 
";
">  c #69A2FF", 
",  c #9DDBFF", 
"'  c #D0F2FF", 
")  c #040533",
"!  c #070C67", 
"~  c #0B139E", 

 187



"{  c #0D17C3", 
"]  c #1C2FE8", 
  c #3F65FF", 

  c #253DF8", 

  c #1E31E7", 
  c #1524E0", 

3B5FFF", 
  c #77B7FF", 

"g  c #97DFFF", 
  c #F1FBFF", 

  c #070B5F", 

  c #446ADE", 

  c #F6FCFF", 

  c #070B5C", 

  c #0E18CB", 

  c #0C15AE", 

  c #1524E1", 

  c #7FC3FF", 

  c #EDFAFF", 

  c #060A59", 

  c #0E18CA", 

"^
"/  c #6CA8FF", 
"(  c #9DDCFF", 
"_  c #D9F5FF", 
":  c #03042C", 
"<  c #070C64", 
"[  c #0B1298", 
"}  c #0D17C4", 
"|  c #111ED9", 
"1  c #1B2EE8", 
"2
"3  c #3D62FF", 
"4  c #71AEFF", 
"5  c #9BDEFF", 
"6  c #E4F8FF", 
"7  c #030324", 
"8  c #0B1297", 
"9  c #0D16B9", 
"0  c #101BD6", 
"a  c #2237F3", 
"b
"c
"d  c #233AFB", 
"e  c #
"f

"h
"i  c #020322", 
"j
"k  c #0D16B8", 
"l  c #0E18CC", 
"m  c #1B2EF0", 
"n  c #5687FF", 
"o
"p  c #0D17C6", 
"q  c #243CFF", 
"r  c #3859FF", 
"s  c #7EC2FF", 
"t  c #92E1FF", 
"u
"v  c #030327", 
"w
"x  c #0A1295", 
"y  c #0D15B7", 
"z
"A  c #1B2EEF", 
"B  c #5686FD", 
"C  c #83C9FF", 
"D  c #4D78D0", 
"E
"F  c #0E19C8", 
"G
"H  c #263FFF", 
"I  c #3A5EFF", 
"J
"K  c #9DE2FF", 
"L
"M  c #03042B", 
"N
"O  c #0A1191", 
"P  c #0C15B6", 
"Q

 188



"R  c #1A2DED", 
"S  c #5382FC", 

  c #BFEBFF", 

  c #1626E2", 

. c #060A54", 

. c #0C15B4", 

. c #BDE9FF", 

"'. c #0F19CA", 

. c #253EFF", 

. c #A9DDFF", 

. c #03052E", 

. c #0E17BD", 

. c #4A75FD", 

. c #E0F4FE", 

. c #0A108B", 

A", 

. c #4F7EFF", 

. c #0F18BB", 

. c #74B4FF", 

. c #0B14A2", 

. c #0E19D1", 

. c #324DFF", 

. c #BDC9FF", 
                  ", 

                                               ", 
               ", 

                                               ", 

"T  c #80C5FF", 
"U
"V  c #7682B8", 
"W  c #091086", 
"X  c #0C15AF", 
"Y  c #0F19C9", 
"Z
"`  c #3E64FF", 
" . c #7CBFFF", 
".. c #A6E3FF", 
"+. c #E6F8FF", 
"@. c #020427", 
"#
"$. c #0A118D", 
"%
"&. c #192BEB", 
"*. c #507DFC", 
"=
"-. c #E3F6FF", 
";. c #080D70", 
">. c #0A1088", 
",. c #0C15B0", 

"). c #1727E5", 
"!
"~. c #3D61FF", 
"{. c #79C0FF", 
"]
"^. c #DEF1FF", 
"/
"(. c #0A1192", 
"_
":. c #1829E8", 
"<
"[. c #B8E8FF", 
"}
"|. c #080D71", 
"1
"2. c #0C15B2", 
"3. c #0E19C
"4. c #1B2EFD", 
"5
"6. c #5F93FF", 
"7. c #CADCFF", 
"8. c #030635", 
"9. c #040846", 
"0. c #090E82", 
"a
"b. c #2239FF", 
"c
"d. c #8EDBFF", 
"e
"f. c #0D16C0", 
"g
"h. c #1A2CFB", 
"i
"j. c #395AFF", 
"k
"                              
" 
"                                 
" 

 189



"                                                ", 
"                      . +                       ", 
                   @ # $ % &                   ", 

 
               ) ! ~ { ] ^ / ( _               ", 

", 
           7 . 8 9 0 a b c d e f g h           ", 

     N O  Q R

   /.N (._.:.<.s [.}.      |.1.2.3.:.4.5.6.7.  ", 

                  ", 
                  ", 

                      ", 
                                               ", 

                                               "}; 

H_ 

lename[]); 

" 
"                  * = - ; > , '                 ",
" 
"              : < [ } | 1 2 3 4 5 6             
" 
"          i j [ k l m n o p c q r s t u         ", 
"        v w x y z A B C D E F G H I J K L       ", 
"  M  P  S T U V W X Y Z H `  ...+.    ", 
"    @.#.$.%.Q &.*.s =.-.  ;.>.,.'.).!.~.{.].^.  ", 
" 
"    8.9.0.a.b.c.d.6           ;.e.f.g.h.i.j.k.  ", 
"                                                ", 
"                              
"                              
"                          
" 
"                                                ", 
" 
 

interface.h 
 
#ifndef _INTERFACE_
#define _INTERFACE_H_ 
 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <unistd.h> 
#include <string.h> 
 
#include <gdk/gdkkeysyms.h> 
#include <gtk/gtk.h> 
 
enum 
{ 
   MSG00, 
   MSG01, 
   MSG02, 
   MSG03, 
   MSG04, 
   MSG05, 
   MSG06, 
   MSG07, 
   MSG08, 
   MSG09, 
   MSG10, 
   MSG11, 
   MSGFF 
}; 
 
#define NUM_OF_BUTTONS 10 
 
#define BUTTONS_ON  TRUE 
#define BUTTONS_OFF FALSE 
 
GtkWidget* create_mainwin (void); 
GtkWidget* create_aboutwin (void); 
GtkWidget* xpm_label_box ( GtkWidget* parent, 
                          char*  xpm_fi
void buttonControl (char cmd); 
void messageWrite (short msg); 
 

 190



#endif 

ypes              */ 

thread.h> 
nclude <time.h> 

t tc_serverSend(short int command); 

 

server.h 
 
#ifndef _SERVER_H_ 
#define _SERVER_H_ 
 
#include <sys/socket.h>       /*  socket definitions        */ 
#include <sys/types.h>        /*  socket t
#include <sys/stat.h> 
#include <arpa/inet.h>        /*  inet (3) funtions         */ 
#include <netinet/in.h> 
#include <stdio.h> 
#include <unistd.h> 
#include <fcntl.h> 
#include <p
#i
 
#define PORT_NUM (2003) 
#define LISTENQ  (0) 
 
/* Server API */ 
int tc_serverStart(void); 
int tc_serverStop(void); 
in
 
#endif 
 

 191



Source Files 
 

callbacks.c 
 
nclude "callbacks.h" #i

#include "interface.h" 
nclude "server.h" #i

#include "control.h" 
 included to make work on Po// werPC Mac 

s 

nclude </usr/include/sys/_endian.h> 

trol_Quit(void) 

 */ 

memcpy(to+1, from,    1); 

sage, temp, 

 

uitem, 
er_data) 

 
start_server_activate                     (GtkMenuItem     *menuitem, 

                           gpointer         user_data) 

Start(); 

// These are Big Endian systems, while Intel are Little Endians system
 Didn't work as expected //

//#i
 
int error = 0; 
unsigned int contButtStatus = 0; 
pthread_t contThread; 
void* contThread_func(void* arg); 
 
void 
olleyContr

{ 
   tc_serverStop(); 
   gtk_main_quit(); 
} 
 
id vo

send_message(short int message) 
{ 
 
   /* Added to work on PPC based Mac which is Big Endian
   #ifdef PPC 
   short int temp; 
   char *from, *to; 
   from = (char *)&message; 

o = (char *)&temp;    t
   

   memcpy(to,   from+1,  1); 
   //printf("message = %x, %d; temp = %x, %d\n", message, mes
temp); 
   message = temp; 

message);   //printf("message = %x\n", 
   #endif 
 
   error = tc_serverSend(message); 
} 
 
void 
out_ab button_activate                     (GtkMenuItem     *men

s                                           gpointer         u
{ 
} 
 
void

             
{ 
  DEBUG1 ("Start Sever Activated\n");   

    error = tc_server
 
    if(error == -100) 
      messageWrite(MSG04); 
  else if(error)   

      messageWrite(MSG05); 

 192



    else 
      messageWrite(MSG06); 
} 
 
void 

             (GtkMenuItem     *menuitem, 

ted\n"); 
  send_message(TRC_CLOSE_CONN); 

 == -100) 

 

ressed      (GtkButton       *button, 
                                      gpointer         user_data) 

nContinous Forward Pressed\n"); 

hread_func, NULL); 

s_forward_button_released     (GtkButton       *button, 
 gpointer         user_data) 

d Released\n"); 
 contButtStatus = 0; 

pressed      (GtkButton       *button, 
                                       gpointer         user_data) 

tatus = TRC_CONT_BACKWARD; 
ntThread_func, NULL); 

id 
ton, 

                            gpointer         user_data) 

"); 
   contButtStatus = 0; 
 on_stop_button_pressed(button, user_data); 

     (GtkButton       *button, 
pointer         user_data) 

 DEBUG1 ("\nSingle Step Backward Pressed\n"); 

_released     (GtkButton       *button, 

stop_server_activate       
                                        gpointer         user_data) 
{ 
    DEBUG1 ("Stop Sever Activa
  
    if(tc_serverStop()
      messageWrite(MSG07); 
    else 
      messageWrite(MSG08); 
} 

 
void 
on_continuous_forward_button_p
  
{ 
   DEBUG1 ("\
   contButtStatus = TRC_CONT_FORWARD; 
   pthread_create(&contThread, NULL, contT
} 
 
 
void 
on_continuou
                                       
{ 
   DEBUG1 ("\nContinous Forwar
  
   on_stop_button_pressed(button, user_data); 
} 
 
void 
on_continuous_backward_button_
  
{ 
   DEBUG1 ("\nContinous Backward Pressed\n"); 
   contButtS
   pthread_create(&contThread, NULL, co
} 
 
vo
on_continuous_backward_button_released     (GtkButton       *but
             
{ 
   DEBUG1 ("\nContinous Backward Released\n

  
} 
 
void 
on_single_step_backward_button_pressed 
                                          g
{ 
  
   send_message(TRC_STEP_BACKWARD); 
} 
 
void 
on_single_step_backward_button

 193



                                          gpointer         user_data) 

  gpointer         user_data) 

ard Pressed\n"); 
 send_message(TRC_STEP_FORWARD); 

released     (GtkButton       *button, 
                                       gpointer         user_data) 

data); 

id 

       user_data) 

; 
 send_message(TRC_STOP); 

ed      (GtkButton       *button, 
                                     gpointer         user_data) 

 

                                       gpointer         user_data) 

 

 DEBUG1 ("\nSpeed Decrease Pressed\n"); 
 send_message(TRC_SPEED_DOWN); 

_decrease_speed_button_released     (GtkButton       *button, 
                                     gpointer         user_data) 

DEBUG1 ("\nSpeed Decrease Released\n"); 
 on_stop_button_pressed(button, user_data); 

d 

{ 
   DEBUG1 ("\nSingle Step Backward Released\n"); 
   on_stop_button_pressed(button, user_data); 
} 
 
void 
on_single_step_forward_button_pressed      (GtkButton       *button, 
                                       
{ 
   DEBUG1 ("\nSingle Step Forw
  
} 
 
void 
on_single_step_forward_button_
  
{ 
   DEBUG1 ("\nSingle Step Forward Released\n"); 
   on_stop_button_pressed(button, user_
} 
 
vo
on_stop_button_pressed      (GtkButton       *button, 
                             gpointer  
{ 
   DEBUG1 ("\nStop Pressed\n")
  
} 
 
void 
on_increase_speed_button_press
  
{ 
   DEBUG1 ("\nSpeed Increase Pressed\n"); 
   send_message(TRC_SPEED_UP);
} 
 
void 
on_increase_speed_button_released     (GtkButton       *button, 

{ 
   DEBUG1 ("\nSpeed Increase Released\n"); 
   on_stop_button_pressed(button, user_data); 
} 
 
void 
on_decrease_speed_button_pressed      (GtkButton       *button,
                                       gpointer         user_data) 
{ 
  
  
} 
 
 
void 
on
  
{ 
   
  
} 
 
voi

 194



on_brake_on_button_pressed      (GtkButton       *button, 
            gpointer         user_data) 

sed\n"); 
AKE); 

tkButton       *button, 
           gpointer         user_data) 

_brake_off_button_pressed      (GtkButton       *button, 
ointer         user_data) 

id 
on, 

      gpointer         user_data) 

ton, user_data); 

kButton       *button, 

    DEBUG1 ("\nDetector Power Untoggled\n"); 

OR_POWER_ON); 

 arg) 

    usleep((unsigned int)250000); 

; 

                     
{ 
   DEBUG1 ("\nBrake On Pres
   send_message(TRC_BR
} 
 
void 
on_brake_on_button_released     (G
                      
{ 
   DEBUG1 ("\nBrake On Released\n"); 
   on_stop_button_pressed(button, user_data); 
} 
 
void 
on
                                  gp
{ 
   DEBUG1 ("\nBrake Off Pressed\n"); 
   send_message(TRC_UNBRAKE); 
} 
 
vo
on_brake_off_button_released     (GtkButton       *butt
                            
{ 
   DEBUG1 ("\nBrake Off Released\n"); 
   on_stop_button_pressed(but
} 
 
 
void 
on_detecpw_button_toggle  (Gt
                                  gpointer         user_data) 
{ 
   static char toggle = 0; 
 
   if(toggle) 
   { 
  
      send_message(TRC_DETECTOR_POWER_OFF); 
      toggle = 0; 
   } 
   else 
   { 
      DEBUG1 ("\nDetector Power Toggled\n"); 
      send_message(TRC_DETECT
      toggle = 1; 
   } 
} 
 
void* contThread_func(void*
{ 
    while(contButtStatus != 0) 
    { 
      send_message(contButtStatus); 
      //printf("hello\n"); 
  
    } 
      send_message(TRC_STOP)
} 
 

 195



client.c 
 
#include <sys/socket.h> 
#include <arpa/inet.h> 
#include <stdio.h> 
 
#include "control.h" 
 
#define IPADDRESS   "127.0.0.1" 
#define PORT     (2003) 
 
int main(void) 
{ 
    struct sockaddr_in servAddr; 

, SOCK_STREAM, IPPROTO_TCP)) < 0) 

t        = htons(PORT); 

  if(connect(sock, (struct sockaddr *)&servAddr, sizeof(servAddr)) < 

it(0); 

WARD; 
 sizeof(command), 0) < sizeof(command)) 

ding full packet size\n"); 

ck, &command, sizeof(command), 0)) 

nd); 
ONN) 

    short int command; 
    int sock; 
    int i; 
    int cc; 
 
    if((sock = socket(PF_INET
     printf("Error openning socket.\n"), exit(0); 
 
    memset(&servAddr, 0, sizeof(servAddr)); 
    servAddr.sin_family      = AF_INET; 
    servAddr.sin_addr.s_addr = inet_addr(IPADDRESS); 
    servAddr.sin_por
 
  
0) 
     printf("Error connecting to socket\n"), ex
 
 
    command = TRC_STEP_FOR
    if(send(sock, &command,
       printf("Error sen
 
    while(cc = recv(so
    { 
     printf("command = %X\n", comma
            if(command == TRC_CLOSE_C
               break; 
    } 
 
    close(sock); 
    return 0; 
} 
 

control.c 
 
char *MSG_A[] = { 
 "$ LDBS Type\n",   

   "$ Trolley Type\n" 
}; 
 
char *MSG_B[] = { 
   "$ Current duty cycle\n" 
}; 
 
char *MSG_C[] = { 
 "$ Step Forward\n",   

   "$ Step Backward\n", 
   "$ Continous Forward\n", 

 196



   "$ Continous Backward\n", 
   "$ Engage Brakes\n", 

kes\n", 
"$ Speed Up\n", 
 "$ Slow Down\n", 

Trolley Stop\n", 
er\n", 

"$ Brakes are on\n", 
s are off\n", 

$ Detector Power Enabled\n", 

Network Failed\n",  
P FB\n",  

DHCP NFB\n",  

interface.c 
ude "interface.h" 

clude "icons.h" 

 Server.\n", 

 

GtkWidget *aboutwin; 

int tmp_key; 
menu_button; 

n_menu; 
_accels; 

on_menu_accels; 

   "$ Disengage Bra
   
  
   "$ 
   "$ Enable Detector Pow
   
   "$ Brake
   "
}; 
 
char *MSG_E[] = { 
   "$ Network OK\n",  
   "$ 
   "$ DHC
   "$ 
   "$ Brake Failure\n",  
   "$ Motor Failure\n"  
}; 
 

 
#incl
#include "control.h" 
#include "callbacks.h" 
#in
 
char* msgArray[] = 
{ 
"$ Incorrect Command.\n", 
"$ Initiate TCP/IP
"$ Server Not Running.\n", 
"$ Send TCP/IP Data Failed.\n", 
"$ Server Already Running.\n", 
"$ Server Start Failed.\n", 
"$ Server Started.\n", 
"$ Server Already Stopped.\n", 
"$ Server Stopped.\n", 
"$ Accepted Connection.\n", 
"$ TCP/IP Disconnected.\n", 
"$ Unable to shutdown list_s.\n" 
};
 
 
GtkWidget *all_buttons[NUM_OF_BUTTONS]; 
//GtkWidget *message_window; 
 
GtkWidget* 
create_mainwin (void) 
{ 
  GtkWidget *mainwin; 
  
  GtkWidget *main_vert_boxes; 
  GtkWidget *menubar; 
  gu
  GtkWidget *file_
  GtkWidget *file_menu_butto
  GtkAccelGroup *file_menu_button_menu
  GtkWidget *quit1; 
  GtkWidget *server_menu_button; 
  GtkWidget *server_menu_button_menu; 
  GtkAccelGroup *server_menu_butt

 197



  GtkWidget *start_server_button; 
  GtkWidget *stop_server_button; 
  GtkWidget *help1; 

GtkAccelGroup *help1_menu_accels; 
 *about_button; 

tkWidget *lable_horz_boxes; 
GtkWidget *lable_spacer1; 

  GtkWidget *speed_label; 
  GtkWidget *lable_spacer3; 
GtkWidget *brake_label; 

t *button_spacer1; 
 

n; 
 

acer3; 
_boxes; 
button; 

dget *brake_on_box; 
_button; 
f_box; 

5; 
or; 

ntrols_label; 
s; 
d_button; 
rd_box; 
d_button; 
rd_box; 

n; 
 

kward_button; 
ckward_box; 

_button; 
d_box; 

sage_window_horz_boxes; 
ssage_window_label; 

*message_window_vscrollbar; 
 
GtkWidget *detecpw_horz_boxe

  GtkWidget *detecpw_label; 

_box; 
group; 
 

s_new (); 

tk_accel_group_new (); 

ew (GTK_WINDOW_TOPLEVEL); 
win(); 

(GTK_OBJECT (mainwin), "mainwin", mainwin); 
DOW (mainwin), "Trolley Control"); 
DOW (mainwin), FALSE, FALSE, FALSE); 

  GtkWidget *help1_menu; 
  
  GtkWidget
  G
  

  
  GtkWidget *lable_spacer5; 

 *speed_brake_horz_boxes;   GtkWidget
Widge  Gtk

  GtkWidget *speed_vert_boxes;
  GtkWidget *increase_speed_butto

kWidget *increase_speed_box;  Gt
  GtkWidget *decrease_speed_button; 
GtkWidget *decrease_speed_box;   

  GtkWidget *button_sp
  GtkWidget *brake_vert

get *brake_on_  GtkWid
GtkWi  

  GtkWidget *brake_off
GtkWidget *brake_of  

  GtkWidget *button_spacer
t  GtkWidget *horz_separa

GtkWidget *trolley_co  
  GtkWidget *control_horz_boxe
  GtkWidget *continuous_forwar

Widget *continuous_forwa  Gtk
  GtkWidget *single_step_forwar

tkWidget *single_step_forwa  G
  GtkWidget *stop_butto
  GtkWidget *stop_box;
  GtkWidget *single_step_bac
GtkWidget *single_step_ba  

  GtkWidget *continuous_backward
r  GtkWidget *continuous_backwa

 /*
  GtkWidget *mes

me  GtkWidget *
tkWidget   G

*/
  s; 

  GtkWidget *detecpw_button; 
  GtkWidget *detecpw
  GtkAccelGroup *accel_
  GtkTooltips *tooltips;
  int i; 
 
 
  tooltips = gtk_tooltip
 
  accel_group = g
 
  mainwin = gtk_window_n
  aboutwin = create_about
 
  gtk_object_set_data 
  gtk_window_set_title (GTK_WIN
  gtk_window_set_policy (GTK_WIN
 

 198



  main_vert_boxes = gtk_vbox_new (FALSE, 0); 
_ref (main_vert_boxes); 

OBJECT (mainwin),  
ain_vert_boxes",  

                    main_vert_boxes, 
                          (GtkDestroyNotify) gtk_widget_unref); 

rt_boxes); 
tk_container_add (GTK_CONTAINER (mainwin), main_vert_boxes); 

bar_new (); 
nubar); 

gtk_object_set_data_full (GTK_OBJECT (mainwin), "menubar", menubar, 
        (GtkDestroyNotify) gtk_widget_unref); 

gtk_widget_show (menubar); 
boxes), menubar, FALSE, FALSE, 

enu_bar_set_shadow_type (GTK_MENU_BAR (menubar), 

file_menu_button = gtk_menu_item_new_with_label (""); 
se_uline (GTK_LABEL (GTK_BIN 

le_menu_button)->child), 

erator (file_menu_button, "activate_item", 

                            tmp_key, GDK_MOD1_MASK, (GtkAccelFlags) 

ile_menu_button); 
a_full (GTK_OBJECT (mainwin), "file_menu_button", 

le_menu_button, 
              (GtkDestroyNotify) gtk_widget_unref); 

tk_widget_show (file_menu_button); 
gtk_container_add (GTK_CONTAINER (menubar), file_menu_button); 

ile_menu_button_menu = gtk_menu_new (); 
ile_menu_button_menu); 

", file_menu_button_menu, 
        (GtkDestroyNotify) gtk_widget_unref); 

gtk_menu_item_set_submenu (GTK_MENU_ITEM (file_menu_button), 
tton_menu); 

cel_group 

y = gtk_label_parse_uline (GTK_LABEL (GTK_BIN (quit1)->child), 
                                "_Quit"); 
gtk_widget_add_accelerator (quit1, "activate_item", 

, 
                           tmp_key, 0, 0); 

it1); 
BJECT (mainwin), "quit1", quit1, 
troyNotify) gtk_widget_unref); 

1); 
ner_add (GTK_CONTAINER (file_menu_button_menu), quit1); 

ccelerator (quit1, "activate", accel_group, 
           GDK_q, 0, 

       GTK_ACCEL_VISIBLE); 

_menu_item_new_with_label (""); 
tmp_key = gtk_label_parse_uline (GTK_LABEL (GTK_BIN 

_button)->child), 

  gtk_widget
  gtk_object_set_data_full (GTK_
                            "m
        
  
  gtk_widget_show (main_ve
  g
 
  menubar = gtk_menu_
  gtk_widget_ref (me
  
                    
  
  gtk_box_pack_start (GTK_BOX (main_vert_
0); 
  gtk_m
GTK_SHADOW_ETCHED_IN); 
 
  
  tmp_key = gtk_label_par
(fi
                                   "_File"); 
  gtk_widget_add_accel
accel_group, 
  
0); 
  gtk_widget_ref (f
  gtk_object_set_dat
fi
              
  g
  
 
  f
  gtk_widget_ref (f
  gtk_object_set_data_full (GTK_OBJECT (mainwin), 
"file_menu_button_menu
                    
  
file_menu_bu
  file_menu_button_menu_accels = gtk_menu_ensure_uline_ac
(GTK_MENU (file_menu_button_menu)); 
 
  quit1 = gtk_menu_item_new_with_label (""); 
  tmp_ke
   
  
file_menu_button_menu_accels
   
  gtk_widget_ref (qu
  gtk_object_set_data_full (GTK_O
                            (GtkDes
  gtk_widget_show (quit
  gtk_contai
  gtk_widget_add_a
                   
                       
 
  server_menu_button = gtk
  
(server_menu
                                   "_Server"); 

 199



  gtk_widget_add_accelerator (server_menu_button, "activate_item", 
cel_group, 

tkAccelFlags) 

er_menu_button); 
gtk_object_set_data_full (GTK_OBJECT (mainwin), "server_menu_button", 

tify) gtk_widget_unref); 

gtk_container_add (GTK_CONTAINER (menubar), server_menu_button); 

 = gtk_menu_new (); 
gtk_widget_ref (server_menu_button_menu); 

nwin), 
erver_menu_button_menu", server_menu_button_menu, 

               (GtkDestroyNotify) gtk_widget_unref); 
rver_menu_button), 

menu_button_menu); 
nsure_uline_accel_group 

U (server_menu_button_menu)); 

_key = gtk_label_parse_uline (GTK_LABEL (GTK_BIN 
_server_button)->child), 

    ar_t"); 
lerator (start_server_button, "activate_item", 

_menu_button_menu_accels, 
                            tmp_key, 0, 0); 
gtk_widget_ref (start_server_button); 

 
_server_button, 
                      (GtkDestroyNotify) gtk_widget_unref); 

ONTAINER (server_menu_button_menu), 

= gtk_menu_item_new_with_label (""); 
key = gtk_label_parse_uline (GTK_LABEL (GTK_BIN 

top_server_button)->child), 
                      "Sto_p"); 

rator (stop_server_button, "activate_item", 
rver_menu_button_menu_accels, 

widget_ref (stop_server_button); 
_button", 

on, 
f); 

top_server_button); 

 

th_label (""); 
(GTK_LABEL (GTK_BIN (help1)->child), 
 "_Help"); 

gtk_widget_add_accelerator (help1, "activate_item", accel_group, 
                   tmp_key, GDK_MOD1_MASK, (GtkAccelFlags) 

gtk_object_set_data_full (GTK_OBJECT (mainwin), "help1", help1, 

lp1); 
ONTAINER (menubar), help1); 

ac
                              tmp_key, GDK_MOD1_MASK, (G
0); 
  gtk_widget_ref (serv
  
server_menu_button, 
                            (GtkDestroyNo
  gtk_widget_show (server_menu_button); 
  
 
  server_menu_button_menu
  
  gtk_object_set_data_full (GTK_OBJECT (mai
"s
             
  gtk_menu_item_set_submenu (GTK_MENU_ITEM (se
server_
  server_menu_button_menu_accels = gtk_menu_e
(GTK_MEN
 
  start_server_button = gtk_menu_item_new_with_label (""); 
  tmp
(start
                               "St
  gtk_widget_add_acce
server
  
  
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "start_server_button",
start
      
  gtk_widget_show (start_server_button); 
  gtk_container_add (GTK_C
start_server_button); 
 
  stop_server_button 
  tmp_
(s
             
  gtk_widget_add_accele
se
                              tmp_key, 0, 0); 
  gtk_
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "stop_server
stop_server_butt
                            (GtkDestroyNotify) gtk_widget_unre
  gtk_widget_show (s
  gtk_container_add (GTK_CONTAINER (server_menu_button_menu), 
stop_server_button);
 
  help1 = gtk_menu_item_new_wi
  tmp_key = gtk_label_parse_uline 
                                  
  
           
0); 
  gtk_widget_ref (help1); 
  
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_widget_show (he
  gtk_container_add (GTK_C
 
  help1_menu = gtk_menu_new (); 

 200



  gtk_widget_ref (help1_menu); 
CT (mainwin), "help1_menu", 

  (GtkDestroyNotify) gtk_widget_unref); 
nu); 

ls = gtk_menu_ensure_uline_accel_group (GTK_MENU 
elp1_menu)); 

on = gtk_menu_item_new_with_label (""); 
line (GTK_LABEL (GTK_BIN (about_button)-

                                 "_About"); 

0); 

OBJECT (mainwin), "about_button", 

                          (GtkDestroyNotify) gtk_widget_unref); 

K_CONTAINER (help1_menu), about_button); 

_horz_boxes); 
win), "lable_horz_boxes", 

     (GtkDestroyNotify) gtk_widget_unref); 

_boxes, 

 20); 

abel_new (""); 
_ref (lable_spacer1); 

gtk_object_set_data_full (GTK_OBJECT (mainwin), "lable_spacer1", 

tkDestroyNotify) gtk_widget_unref); 
; 

GTK_BOX (lable_horz_boxes), lable_spacer1, TRUE, 
UE, 0); 

, 35, -2); 

d_label = gtk_label_new ("SPEED"); 
idget_ref (speed_label); 

ull (GTK_OBJECT (mainwin), "speed_label", 
label, 

_pack_start (GTK_BOX (lable_horz_boxes), speed_label, FALSE, 

_set_usize (speed_label, 50, 20); 

k_widget_ref (lable_spacer3); 
n), "lable_spacer3", 

     (GtkDestroyNotify) gtk_widget_unref); 

_spacer3, TRUE, 

2); 

el_new ("BRAKE"); 

  gtk_object_set_data_full (GTK_OBJE
help1_menu, 
                          
  gtk_menu_item_set_submenu (GTK_MENU_ITEM (help1), help1_me
  help1_menu_acce
(h
 
  about_butt
  tmp_key = gtk_label_parse_u
>child), 
  
  gtk_widget_add_accelerator (about_button, "activate_item", 
help1_menu_accels, 
                              tmp_key, 0, 
  gtk_widget_ref (about_button); 
  gtk_object_set_data_full (GTK_
about_button, 
  
  gtk_widget_show (about_button); 
  gtk_container_add (GT
 
  lable_horz_boxes = gtk_hbox_new (FALSE, 0); 
  gtk_widget_ref (lable
  gtk_object_set_data_full (GTK_OBJECT (main
lable_horz_boxes, 
                       
  gtk_widget_show (lable_horz_boxes); 
  gtk_box_pack_start (GTK_BOX (main_vert_boxes), lable_horz
FALSE, FALSE, 0); 
  gtk_widget_set_usize (lable_horz_boxes, -2,
 
  lable_spacer1 = gtk_l
  gtk_widget
  
lable_spacer1, 
                            (G
  gtk_widget_show (lable_spacer1)
  gtk_box_pack_start (
TR
  gtk_widget_set_usize (lable_spacer1
 
  spee
  gtk_w
  gtk_object_set_data_f
speed_
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_widget_show (speed_label); 
  gtk_box
FALSE, 0); 
  gtk_widget
 
  lable_spacer3 = gtk_label_new (""); 
  gt
  gtk_object_set_data_full (GTK_OBJECT (mainwi
lable_spacer3, 
                       
  gtk_widget_show (lable_spacer3); 
  gtk_box_pack_start (GTK_BOX (lable_horz_boxes), lable
TRUE, 0); 
  gtk_widget_set_usize (lable_spacer3, 20, -
 
  brake_label = gtk_lab
  gtk_widget_ref (brake_label); 

 201



  gtk_object_set_data_full (GTK_OBJECT (mainwin), "brake_label", 

) gtk_widget_unref); 

TK_BOX (lable_horz_boxes), brake_label, FALSE, 

); 

ull (GTK_OBJECT (mainwin), "lable_spacer5", 
5, 

                   (GtkDestroyNotify) gtk_widget_unref); 
widget_show (lable_spacer5); 
x_pack_start (GTK_BOX (lable_horz_boxes), lable_spacer5, TRUE, 

UE, 0); 

es = gtk_hbox_new (FALSE, 0); 
s); 

et_data_full (GTK_OBJECT (mainwin), 
eed_brake_horz_boxes", speed_brake_horz_boxes, 
                          (GtkDestroyNotify) gtk_widget_unref); 

  gtk_widget_show (speed_brake_horz_boxes); 
  gtk_box_pack_start (GTK_BOX (main_vert_boxes), speed_brake_horz_boxes, 
TRUE, TRUE, 1); 
  gtk_widget_set_usize (speed_brake_horz_boxes, 190, 68); 
 
  button_spacer1 = gtk_label_new (""); 
  gtk_widget_ref (button_spacer1); 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "button_spacer1", 
button_spacer1, 
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_widget_show (button_spacer1); 
  gtk_box_pack_start (GTK_BOX (speed_brake_horz_boxes), button_spacer1, 
TRUE, TRUE, 0); 
  gtk_widget_set_usize (button_spacer1, 35, 68); 
 
  speed_vert_boxes = gtk_vbox_new (FALSE, 0); 
  gtk_widget_ref (speed_vert_boxes); 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "speed_vert_boxes", 
speed_vert_boxes, 
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_widget_show (speed_vert_boxes); 
  gtk_box_pack_start (GTK_BOX (speed_brake_horz_boxes), 
speed_vert_boxes, FALSE, FALSE, 10); 
  gtk_widget_set_usize (speed_vert_boxes, 30, -2); 
  gtk_widget_realize(mainwin); 
 
// ------------------- Increase Speed Button --------------------------- 
 
  increase_speed_button = gtk_button_new(); 
  gtk_widget_ref (increase_speed_button); 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), 
"increase_speed_button", increase_speed_button, 
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_box_pack_start (GTK_BOX (speed_vert_boxes), increase_speed_button, 
FALSE, FALSE, 2); 
  gtk_widget_set_usize (increase_speed_button, 30, 30); 
  gtk_tooltips_set_tip (tooltips, increase_speed_button, "Increase 
Speed", NULL); 
  increase_speed_box = xpm_label_box(mainwin,  
                                      UP_xpm); 
                                      //"pixmaps/UP.xpm"); 

brake_label, 
                            (GtkDestroyNotify
  gtk_widget_show (brake_label); 
  gtk_box_pack_start (G
FALSE, 0); 
  gtk_widget_set_usize (brake_label, 50, 20
 
  lable_spacer5 = gtk_label_new (""); 
  gtk_widget_ref (lable_spacer5); 
  gtk_object_set_data_f
lable_spacer
         
  gtk_
  gtk_bo
TR
  gtk_widget_set_usize (lable_spacer5, 35, -2); 
 
  speed_brake_horz_box
  gtk_widget_ref (speed_brake_horz_boxe
  gtk_object_s
"sp
  

 202



  gtk_container_add(GTK_CONTAINER(increase_speed_button),  

 --------------------------- 

ref (decrease_speed_button); 
_set_data_full (GTK_OBJECT (mainwin), 

ase_speed_button", decrease_speed_button, 
                 (GtkDestroyNotify) gtk_widget_unref); 

ow (decrease_speed_button); 
_start (GTK_BOX (speed_vert_boxes), decrease_speed_button, 

 FALSE, 2); 
_set_usize (decrease_speed_button, 30, 30); 

tooltips, decrease_speed_button, "Decrease 

abel_box(mainwin,  
                                DN_xpm); 

ainer_add(GTK_CONTAINER(decrease_speed_button),  
rease_speed_box); 
ease_speed_box); 
rease_speed_button); 

------------------ 

(""); 
); 

gtk_ _OBJECT (mainwin), "button_spacer3", 

DestroyNotify) gtk_widget_unref); 
r3); 
(speed_brake_horz_boxes), button_spacer3, 

on_spacer3, 20, 68); 

 = gtk_vbox_new (FALSE, 0); 
ke_vert_boxes); 

inwin), "brake_vert_boxes", 

    y) gtk_widget_unref); 
e_vert_boxes); 

_horz_boxes), 

gtk_  -2); 

-------------------------- 

brak

ef (brake_on_button); 

gtk_ n),  
    ke_on_button",  

 
  gtk_box_pack_start (GTK_BOX (brake_vert_boxes),  
        brake_on_button,  
        FALSE,  
        FALSE,  
        2); 
 

                    increase_speed_box); 
  gtk_widget_show (increase_speed_box); 
  gtk_widget_show (increase_speed_button); 
 
// ------------------- Decrease Speed Button
 

_speed_button = gtk_button_new();   decrease
  gtk_widget_

bject  gtk_o
ecre"d

           
  gtk_widget_sh

ox_pack  gtk_b
LSE,FA

  gtk_widget
  gtk_tooltips_set_tip (
Speed", NULL); 

ase_speed_box = xpm_l  decre
      

  gtk_cont
                    dec
  gtk_widget_show (decr

dec  gtk_widget_show (
 

--// -------------------  Spacers  -------
 
  button_spacer3 = gtk_label_new 
gtk_ 3  widget_ref (button_spacer

  object_set_data_full (GTK
button_spacer3, 
                            (Gtk
  gtk_widget_show (button_space

BOX   gtk_box_pack_start (GTK_
UE, TRUE, 0); TR

  gtk_widget_set_usize (butt
 
  brake_vert_boxes
  gtk_widget_ref (bra
gtk_  object_set_data_full (GTK_OBJECT (ma

brake_vert_boxes, 
                      (GtkDestroyNotif  

  gtk_widget_show (brak
gtk_  box_pack_start (GTK_BOX (speed_brake

brake_vert_boxes, FALSE, FALSE, 10); 
widget_set_usize (brake_vert_boxes, 30,  

 
 ---// ----------------- Brake Up Button ---

 
e_on_button = gtk_button_new();   

 
get_r  gtk_wid

 
BJECT (mainwi  object_set_data_full (GTK_O

                      "bra  
       brake_on_button, 
                            (GtkDestroyNotify) gtk_widget_unref); 

 203



  gtk_widget_

ON_xpm); 

--------------- 

---- 

_button_new(); 

_full (GTK_OBJECT (mainwin),  

ake_off_button, 
            (GtkDestroyNotify) gtk_widget_unref); 

rt_boxes),  
  

Off", 

ake_off_box); 

 Button ---------------------------

abel_new (""); 
5); 
OBJECT (mainwin), "button_spacer5", 

                          (GtkDestroyNotify) gtk_widget_unref); 
n_spacer5); 

5, 

; 

set_usize (brake_on_button, 30, 30); 
 
  gtk_tooltips_set_tip (tooltips, brake_on_button, "Turn Brakes On", 
NULL); 
 
  brake_on_box = xpm_label_box(mainwin, 
 
  gtk_container_add(GTK_CONTAINER(brake_on_button), brake_on_box); 
 
  gtk_widget_show (brake_on_box); 
 
  gtk_widget_show (brake_on_button); 
 
// ------------------- End Brake Up Button -------------
 
// -------------------- Brake Down Button -------------------------
 
  brake_off_button = gtk
 
  gtk_widget_ref (brake_off_button); 
 
  gtk_object_set_data
       "brake_off_button",  
       br
                
 
  gtk_box_pack_start (GTK_BOX (brake_ve
        brake_off_button,
        FALSE,  
        FALSE,  
        2); 
 
  gtk_widget_set_usize (brake_off_button, 30, 30); 
 
  gtk_tooltips_set_tip (tooltips, brake_off_button, "Turn Brakes 
NULL); 
 
  brake_off_box = xpm bel_la _box(mainwin, OFF_xpm); 
 
  gtk_container_add(GTK_CONTAINER(brake_off_button), br
 
  gtk_widget_show (brake_off_box); 
 
  gtk_widget_show (brake_off_button); 
 
// ------------------- End Brake Down
- 
 
  button_spacer5 = gtk_l
  gtk_widget_ref (button_spacer
  gtk_object_set_data_full (GTK_
button_spacer5, 
  
  gtk_widget_show (butto
  gtk_box_pack_start (GTK_BOX (speed_brake_horz_boxes), button_spacer
TRUE, TRUE, 0); 
  gtk_widget_set_usize (button_spacer5, 35, 68); 
 
  horz_separator = gtk_hseparator_new (); 
  gtk_widget_ref (horz_separator); 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "horz_separator", 
horz_separator, 
                            (GtkDestroyNotify) gtk_widget_unref)
  gtk_widget_show (horz_separator); 

 204



  gtk_box_pack_start (GTK_BOX (main_vert_boxes), horz_separator, TRUE, 

                  (GtkDestroyNotify) gtk_widget_unref); 

, 
 FALSE, 0); 

gtk_hbox_new (TRUE, 0); 
(control_horz_boxes); 

, 
boxes, 

t_show (control_horz_boxes); 

SE, 4); 

------------ Continuous Forward Button ----------------------

full (GTK_OBJECT (mainwin),  

                   continuous_forward_button,  

art (GTK_BOX (control_horz_boxes),  

       0); 

                      continuous_forward_button,  
  "Continuous Forward",  

gtk_container_add(GTK_CONTAINER(continuous_forward_button), 
box); 

ton); 

--------------- Single Step Forward Button ----------------------

TRUE, 0); 
 
  trolley_controls_label = gtk_label_new ("Trolley Movement"); 
  gtk_widget_ref (trolley_controls_label); 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), 
"trolley_controls_label", trolley_controls_label, 
          
  gtk_widget_show (trolley_controls_label); 
  gtk_box_pack_start (GTK_BOX (main_vert_boxes), trolley_controls_label
FALSE,
  gtk_widget_set_usize (trolley_controls_label, -2, 18); 
 
  control_horz_boxes = 
  gtk_widget_ref 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "control_horz_boxes"
control_horz_
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_widge
  gtk_box_pack_start (GTK_BOX (main_vert_boxes), control_horz_boxes, 
FALSE, FAL
  gtk_widget_set_usize (control_horz_boxes, 190, 30); 
 
 
// --------
------- 
 
  continuous_forward_button = gtk_button_new(); 
 
  gtk_widget_ref (continuous_forward_button); 
 
  gtk_object_set_data_
                            "continuous_forward_button",  
         
                            (GtkDestroyNotify) gtk_widget_unref); 
 
  gtk_box_pack_st
                      continuous_forward_button,  
                      FALSE,  
                      FALSE,  
               
 
  gtk_widget_set_usize (continuous_forward_button, 30, 30); 
 
  gtk_container_set_border_width (GTK_CONTAINER 
(continuous_forward_button), 1); 
 
  gtk_tooltips_set_tip (tooltips,  
  
                      
                        NULL); 
 
  continuous_forward_box = xpm_label_box(mainwin, CF_xpm); 
 
  
continuous_forward_
 
  gtk_widget_show (continuous_forward_box); 
 
  gtk_widget_show (continuous_forward_but
 
// ----
----- 
 

 205



  single_step_forward_button = gtk_button_new(); 
 
  gtk_widget_ref (single_step_forward_button); 
 
  gtk_object_set_data_full (GTK_OBJECT (mainwin),  
                            "single_step_forward_button",  
                             single_step_forward_button, 
                            (GtkDestroyNotify) gtk_widget_unref); 
 
  gtk_box_pack_start (GTK_BOX (control_horz_boxes),  
                      single_step_forward_button,  

p (tooltips,  

ep_forward_box = xpm_label_box(mainwin, SL_xpm); 

                  single_step_forward_box); 

-- 

tton", 

t_unref); 

  

                      FALSE,  
                      FALSE,  
                      0); 
 
  gtk_widget_set_usize (single_step_forward_button, 30, 30); 
 
  gtk_container_set_border_width (GTK_CONTAINER 
(single_step_forward_button), 1); 
 
  gtk_tooltips_set_ti
                        single_step_forward_button,  
                        "Step Forward",  
                        NULL); 
 
  single_st
 
  gtk_container_add(GTK_CONTAINER(single_step_forward_button),  
  
 
  gtk_widget_show (single_step_forward_box); 
 
  gtk_widget_show (single_step_forward_button); 
 
// ------------------- Stop Button -------------------------
 
  stop_button = gtk_button_new(); 
 
  gtk_widget_ref (stop_button); 
 
  gtk_object_set_data_full (GTK_OBJECT (mainwin), "stop_bu
stop_button, 
                            (GtkDestroyNotify) gtk_widge
 
  gtk_box_pack_start (GTK_BOX (control_horz_boxes),
                      stop_button,  
                      FALSE,  
                      FALSE,  
                      0); 
 
  gtk_widget_set_usize (stop_button, 30, 30); 
 
  gtk_container_set_border_width (GTK_CONTAINER (stop_button), 1); 
 
  gtk_tooltips_set_tip (tooltips, stop_button, "Stop", NULL); 
 
  stop_box = xpm_label_box(mainwin, STOP_xpm); 
 
  gtk_container_add(GTK_CONTAINER(stop_button), stop_box); 
 
  gtk_widget_show (stop_box); 
 
  gtk_widget_show (stop_button); 
 

 206



// -------------------- Single Step Backward Button --------------------

le_step_backward_button = gtk_button_new(); 

e_step_backward_button",  

                          (GtkDestroyNotify) gtk_widget_unref); 

(GTK_BOX (control_horz_boxes),  

ltips_set_tip (tooltips, single_step_backward_button, "Step 

ONTAINER(single_step_backward_button),  

------------------ Continuous Forward Button ----------------------
----- 

gtk_object_set_data_full (GTK_OBJECT (mainwin),  
ous_backward_button",  

ntinuous_backward_button,  
estroyNotify) gtk_widget_unref); 

X (control_horz_boxes),  

gtk_widget_set_usize (continuous_backward_button, 30, 30); 

AINER 

gtk_tooltips_set_tip (tooltips,  
tton,  

s Backward",  
        NULL); 

--------- 
 
  sing
 
  gtk_widget_ref (single_step_backward_button); 
 
  gtk_object_set_data_full (GTK_OBJECT (mainwin),  
       "singl
       single_step_backward_button, 
  
 
  gtk_box_pack_start 
                      single_step_backward_button,  
                      FALSE,  
                      FALSE,  
                      0); 
 
  gtk_widget_set_usize (single_step_backward_button, 30, 30); 
 
  gtk_container_set_border_width (GTK_CONTAINER 
(single_step_backward_button), 1); 
 
  gtk_too
Backward", NULL); 
 
  single_step_backward_box = xpm_label_box(mainwin, SR_xpm); 
 
  gtk_container_add(GTK_C
                    single_step_backward_box); 
 
  gtk_widget_show (single_step_backward_box); 
 
  gtk_widget_show (single_step_backward_button); 
 
// --
--
 
  continuous_backward_button = gtk_button_new(); 
 
  gtk_widget_ref (continuous_backward_button); 
 
  
                            "continu
                            co
                            (GtkD
 
  gtk_box_pack_start (GTK_BO
                      continuous_backward_button,  
                      FALSE,  
                      FALSE,  
                      0); 
 
  
 
  gtk_container_set_border_width (GTK_CONT
(continuous_backward_button), 1); 
 
  
                        continuous_backward_bu
                        "Continou
                
 
  continuous_backward_box = xpm_label_box(mainwin, CB_xpm); 

 207



 
  gtk_container_add(GTK_CONTAINER(continuous_backward_button),  

how (continuous_backward_button); 

gtk_widget_show (continuous_backward_box); 

---------------- Detector Power Enable Button ------------------ 

bject_set_data_full (GTK_OBJECT (mainwin), "horz_separator",  

 

label_new ("Detector Power Button"); 
et_ref (detecpw_label); 

ecpw_label); 
,  

l, FALSE, FALSE, 0); 
gtk_widget_set_usize (detecpw_label, -2, 18); 

0); 
gtk_widget_show (detecpw_horz_boxes); 

  
 

2, 30); 

_object_set_data_full (GTK_OBJECT (mainwin),  
                  "detecpw_button",  

  detecpw_button,  

 
            FALSE,  

                    0); 
gtk_widget_set_usize (detecpw_button, 30, 30); 

tton), 1); 
ltips,  

              detecpw_button ,  

L); 

AINER(detecpw_button), detecpw_box); 
detecpw_button); 

 All Buttons Array -------------------- 

increase_speed_button; 

ons[2] = brake_on_button; 
utton; 

                    continuous_backward_box); 
 
  gtk_widget_s
 
  
 
// -
 
  horz_separator = gtk_hseparator_new (); 
  gtk_widget_ref (horz_separator); 
  gtk_o
     horz_separator, (GtkDestroyNotify) gtk_widget_unref); 
  gtk_widget_show (horz_separator); 
  gtk_box_pack_start (GTK_BOX (main_vert_boxes), horz_separator, TRUE,
TRUE, 0); 
 
 
  detecpw_label = gtk_
  gtk_widg
  gtk_widget_show (det
  gtk_box_pack_start (GTK_BOX (main_vert_boxes)
        detecpw_labe
  
 
 
  detecpw_horz_boxes = gtk_hbox_new (FALSE, 
  
  gtk_box_pack_start (GTK_BOX (main_vert_boxes),
    detecpw_horz_boxes, FALSE, FALSE, 4);
  gtk_widget_set_usize (detecpw_horz_boxes, -
 
 
  detecpw_button = gtk_toggle_button_new(); 
  gtk_widget_ref (detecpw_button); 
  gtk
          
                          
                            (GtkDestroyNotify) gtk_widget_unref); 
  gtk_box_pack_start (GTK_BOX (detecpw_horz_boxes),  
                      detecpw_button,  
                      TRUE, 
          
  
  
  gtk_container_set_border_width (GTK_CONTAINER (detecpw_bu
  gtk_tooltips_set_tip (too
          
                        "Detector Power",  
                        NUL
 
  detecpw_box = xpm_label_box(mainwin, DPW_xpm); 
  gtk_container_add(GTK_CONT
  gtk_widget_show (
  gtk_widget_show (detecpw_box); 
 
// -------------------- Setup
  
 
  all_buttons[0] = 
  all_buttons[1] = decrease_speed_button; 
  all_butt
  all_buttons[3] = brake_off_b

 208



  all_buttons[4] = continuous_forward_button; 
  all_buttons[5] = single_step_forward_button; 

stop_button; 

ontinuous_backward_button; 
detecpw_button; 

-- Disable All Buttons ------------------------ 

---- Message Window ----------------------------- 

gtk_hseparator_new (); 

l (GTK_OBJECT (mainwin), "horz_separator",  
, (GtkDestroyNotify) gtk_widget_unref); 

(main_vert_boxes), horz_separator, TRUE, 

bel = gtk_label_new ("Message Window"); 

essage_window_label); 
K_BOX (main_vert_boxes),  

essage_window_label, FALSE, FALSE, 0); 
 -2, 18); 

sage_window_horz_boxes); 

window_horz_boxes, FALSE, FALSE, 4); 
gtk_widget_set_usize (message_window_horz_boxes, -2, 100); 

gtk_text_new (NULL, NULL); 
gtk_text_set_editable (GTK_TEXT (message_window), FALSE); 

 

_window); 

; 
_BOX (message_window_horz_boxes),  

       message_window_vscrollbar, FALSE, FALSE, 0); 
_show (message_window_vscrollbar); 

 

 -------------------- Callback Signals ----------------------------- 

t), 
 NULL); 

  all_buttons[6] = 
  all_buttons[7] = single_step_backward_button; 
  all_buttons[8] = c
  all_buttons[9] = 
 
// ------------------
 
  buttonControl(BUTTONS_OFF); 
 
// ----------------
 
/* 
  horz_separator = 
  gtk_widget_ref (horz_separator); 
  gtk_object_set_data_ful
     horz_separator
  gtk_widget_show (horz_separator); 
  gtk_box_pack_start (GTK_BOX 
TRUE, 0); 
 
 
  message_window_la
  gtk_widget_ref (message_window_label); 
  gtk_widget_show (m
  gtk_box_pack_start (GT
        m
  gtk_widget_set_usize (message_window_label,
 
 
  message_window_horz_boxes = gtk_hbox_new (FALSE, 0); 
  gtk_widget_show (mes
  gtk_box_pack_start (GTK_BOX (main_vert_boxes),  
    message_
  
   
 
  message_window = 
  
  gtk_box_pack_start (GTK_BOX (message_window_horz_boxes),  
                      message_window,  
                      TRUE, 
                      TRUE,  
                      0); 
  gtk_widget_show (message
 
 
  message_window_vscrollbar =  
   gtk_vscrollbar_new (GTK_TEXT (message_window)->vadj)
  gtk_box_pack_start (GTK
 
  gtk_widget
 
*/
  messageWrite(MSG01); 
  
//
 
// Quit Menu Button 
  gtk_signal_connect (GTK_OBJECT (quit1), "activate", 
                      GTK_SIGNAL_FUNC (trolleyControl_Qui
                     
 

 209



// Open Server Menu Button 
  gtk_signal_connect (GTK_OBJECT (start_server_button), "activate", 

ate), 
); 

 

ignal_connect (GTK_OBJECT (stop_server_button), "activate", 
_FUNC (stop_server_activate), 

     NULL); 

ivate", 
GTK_SIGNAL_FUNC (gtk_widget_show), 

      GTK_OBJECT (aboutwin)); 

_OBJECT (continuous_forward_button), "pressed", 

_button_pressed), 

GTK_OBJECT (continuous_forward_button), 

_button_released), 
LL); 

GTK_OBJECT (continuous_backward_button), 

d_button_pressed), 

GTK_OBJECT (continuous_backward_button), 

d_button_released), 

p Forward Button 
TK_OBJECT (single_step_forward_button), 

ressed", 
SIGNAL_FUNC 

(GTK_OBJECT (single_step_forward_button), 

 Single Step Backward Button 
d_button), 

                    GTK_SIGNAL_FUNC 

gtk_signal_connect (GTK_OBJECT (single_step_backward_button), 

 

                      GTK_SIGNAL_FUNC (start_server_activ
                      NULL

// Close Fifo Menu Button 
  gtk_s
                      GTK_SIGNAL
                 
 
// About Menu Button 
  gtk_signal_connect_object (GTK_OBJECT (about_button), "act
                             
                       
// Continous Forward Button 
  gtk_signal_connect (GTK
                      GTK_SIGNAL_FUNC 
(on_continuous_forward
                      NULL); 
 
  gtk_signal_connect (
"released", 
                      GTK_SIGNAL_FUNC 
(on_continuous_forward
                      NU
 
// Continous Backward Button 
  gtk_signal_connect (
"pressed", 
                      GTK_SIGNAL_FUNC 
(on_continuous_backwar
                      NULL); 
 
  gtk_signal_connect (
"released", 
                      GTK_SIGNAL_FUNC 
(on_continuous_backwar
                      NULL); 
 
// Single Ste
  gtk_signal_connect (G
"p
                      GTK_
(on_single_step_forward_button_pressed), 
                      NULL); 
 
  gtk_signal_connect 
"released", 
                      GTK_SIGNAL_FUNC 
(on_single_step_forward_button_released), 
                      NULL); 
 
//
  gtk_signal_connect (GTK_OBJECT (single_step_backwar
"pressed", 
  
(on_single_step_backward_button_pressed), 
                      NULL); 
 
  
"released", 
                      GTK_SIGNAL_FUNC
(on_single_step_backward_button_released), 
                      NULL); 

 210



 
// Stop Button 
  gtk_signal_connect (GTK_OBJECT (stop_button), "pressed", 

       GTK_SIGNAL_FUNC (on_stop_button_pressed), 
); 

n), "pressed", 

tton_pressed), 
                 NULL); 

gtk_signal_connect (GTK_OBJECT (increase_speed_button), "released", 

utton_released), 

 Speed Decrease Button 
, 

_SIGNAL_FUNC 

               NULL); 

eased", 
K_SIGNAL_FUNC 

rease_speed_button_released), 
                    NULL); 

brake_on_button), "pressed", 
brake_on_button_pressed), 

T (brake_on_button), "released", 
TK_SIGNAL_FUNC (on_brake_on_button_released), 

                    NULL); 

gtk_signal_connect (GTK_OBJECT (brake_off_button), "pressed", 
ressed), 

utton), "released", 
leased), 

tector Power Button 
ton), "toggled", 

  NULL); 

inwin); 
ips); 

cel_group (GTK_WINDOW (mainwin), accel_group); 

               
                      NULL
 
// Speed Increase Button 
  gtk_signal_connect (GTK_OBJECT (increase_speed_butto
                      GTK_SIGNAL_FUNC 
(on_increase_speed_bu
     
 
  
                      GTK_SIGNAL_FUNC 
(on_increase_speed_b
                      NULL); 
 
//
  gtk_signal_connect (GTK_OBJECT (decrease_speed_button), "pressed"
                      GTK
(on_decrease_speed_button_pressed), 
       
 
  gtk_signal_connect (GTK_OBJECT (decrease_speed_button), "rel
                      GT
(on_dec
  
 
// Brake On Button 
  gtk_signal_connect (GTK_OBJECT (
                      GTK_SIGNAL_FUNC (on_
                      NULL); 
 
  gtk_signal_connect (GTK_OBJEC
                      G
  
 
// Brake On Button 
  
                      GTK_SIGNAL_FUNC (on_brake_off_button_p
                      NULL); 
 
  gtk_signal_connect (GTK_OBJECT (brake_off_b
                      GTK_SIGNAL_FUNC (on_brake_off_button_re
                      NULL); 
 
// De
  gtk_signal_connect (GTK_OBJECT (detecpw_but
                      GTK_SIGNAL_FUNC (on_detecpw_button_toggle), 
                    
 
 
  gtk_widget_grab_focus (ma
  gtk_object_set_data (GTK_OBJECT (mainwin), "tooltips", toolt
 
  gtk_window_add_ac
 
 
  return mainwin; 
} 
 
GtkWidget* 
create_aboutwin (void) 
{ 

 211



  GtkWidget *aboutwin; 
  GtkWidget *vbox1; 
  GtkWidget *label2; 

l3; 
dget *about_close_button; 

GtkWidget *label4; 

); 
JECT (aboutwin), "aboutwin", aboutwin); 

gtk_widget_set_usize (aboutwin, 210, 230); 
t_title (GTK_WINDOW (aboutwin), "About"); 

 (GTK_WINDOW (aboutwin), FALSE, FALSE, FALSE); 

vbox1, 
       (GtkDestroyNotify) gtk_widget_unref); 

_widget_show (vbox1); 
add (GTK_CONTAINER (aboutwin), vbox1); 

abel_new ("Trolley Control Program"); 
gtk_widget_ref (label2); 

a_full (GTK_OBJECT (aboutwin), "label2", label2, 
yNotify) gtk_widget_unref); 

el2); 
OX (vbox1), label2, FALSE, FALSE, 0); 

gtk_widget_set_usize (label2, -2, 30); 

rator1 = gtk_hseparator_new (); 
rator1); 

(aboutwin), "hseparator1", 

    (GtkDestroyNotify) gtk_widget_unref); 
gtk_widget_show (hseparator1); 

get_set_usize (hseparator1, -2, 2); 

ew ("Integration Engineering Laboratory\n\nCreated 
ated:\nJune 6th, 

set_data_full (GTK_OBJECT (aboutwin), "label1", label1, 
stroyNotify) gtk_widget_unref); 

gtk_widget_show (label1); 
 (vbox1), label1, FALSE, FALSE, 0); 

 hbox1, 
 

 

ox1, -2, 30); 

 gtk_label_new (""); 
gtk_widget_ref (label3); 

el3, 
ify) gtk_widget_unref); 

rt (GTK_BOX (hbox1), label3, FALSE, FALSE, 0); 

  GtkWidget *hseparator1; 
  GtkWidget *label1; 
  GtkWidget *hseparator2; 
  GtkWidget *hbox1; 
  GtkWidget *labe
  GtkWi
  
 
  aboutwin = gtk_window_new (GTK_WINDOW_TOPLEVEL
  gtk_object_set_data (GTK_OB
  
  gtk_window_se
  gtk_window_set_policy
 
  vbox1 = gtk_vbox_new (FALSE, 0); 
  gtk_widget_ref (vbox1); 
  gtk_object_set_data_full (GTK_OBJECT (aboutwin), "vbox1", 
                     
  gtk
  gtk_container_
 
  label2 = gtk_l
  
  gtk_object_set_dat
                            (GtkDestro
  gtk_widget_show (lab
  gtk_box_pack_start (GTK_B
  
 
  hsepa
  gtk_widget_ref (hsepa
  gtk_object_set_data_full (GTK_OBJECT 
hseparator1, 
                        
  
  gtk_box_pack_start (GTK_BOX (vbox1), hseparator1, FALSE, FALSE, 0); 
  gtk_wid
 
  label1 = gtk_label_n
By:\nStephen Nestinger\n\nSeptember 24th, 2004\n\nUpd
2006"); 
  gtk_widget_ref (label1); 
  gtk_object_
                            (GtkDe
  
  gtk_box_pack_start (GTK_BOX
  gtk_widget_set_usize (label1, -2, 166); 
 
  hbox1 = gtk_hbox_new (FALSE, 0); 
  gtk_widget_ref (hbox1); 
  gtk_object_set_data_full (GTK_OBJECT (aboutwin), "hbox1",
                            (GtkDestroyNotify) gtk_widget_unref);
  gtk_widget_show (hbox1);
  gtk_box_pack_start (GTK_BOX (vbox1), hbox1, FALSE, FALSE, 0); 
  gtk_widget_set_usize (hb
 
  label3 =
  
  gtk_object_set_data_full (GTK_OBJECT (aboutwin), "label3", lab
                            (GtkDestroyNot
  gtk_box_pack_sta

 212



  gtk_widget_set_usize (label3, 80, -2); 
l3); 

k_button_new_with_label ("Close"); 
gtk_widget_ref (about_close_button); 

tton", 

oyNotify) gtk_widget_unref); 
et_show (about_close_button); 

LSE, FALSE, 

 (about_close_button, GTK_CAN_FOCUS); 

w (""); 
gtk_widget_ref (label4); 

ull (GTK_OBJECT (aboutwin), "label4", label4, 
get_unref); 

LSE, FALSE, 0); 
gtk_widget_set_usize (label4, 80, -2); 

abel4); 

bject (GTK_OBJECT (about_close_button), 

                           GTK_SIGNAL_FUNC (gtk_widget_hide), 

     char     *xpm_filename[]) 

  GdkBitmap *mask; 

x_new (FALSE, 0); 
tk_container_set_border_width (GTK_CONTAINER (box1), 0); 

ton to get the 
r. */ 

  style = gtk_widget_get_style(parent); 

 stuff */ 
 = gdk_pixmap_create_from_xpm_d (parent->window, &mask, 

                                  &style->bg[GTK_STATE_NORMAL], 
name); 

(pixmap, mask); 

  //label = gtk_label_new (label_text); 

ALSE, 3); 

  gtk_widget_show (labe
 
  about_close_button = gt
  
  gtk_object_set_data_full (GTK_OBJECT (aboutwin), "about_close_bu
about_close_button, 
                            (GtkDestr
  gtk_widg
  gtk_box_pack_start (GTK_BOX (hbox1), about_close_button, FA
0); 
  gtk_widget_set_usize (about_close_button, 50, -2); 
  GTK_WIDGET_UNSET_FLAGS
 
  label4 = gtk_label_ne
  
  gtk_object_set_data_f
                            (GtkDestroyNotify) gtk_wid
  gtk_box_pack_start (GTK_BOX (hbox1), label4, FA
  
  gtk_widget_show (l
 
  gtk_signal_connect_o
"released", 
  
                             GTK_OBJECT (aboutwin)); 
  return aboutwin; 
} 
 
 
GtkWidget *xpm_label_box( GtkWidget *parent, 
                     
{ 
    GtkWidget *box1; 
    GtkWidget *pixmapwid; 
    GdkPixmap *pixmap; 
  
    GtkStyle *style; 
 
    /* Create box for xpm and label */ 
    box1 = gtk_hbo
    g
 
    /* Get the style of the but
     * background colo
  
 
    /* Now on to the xpm
    pixmap
       
                                         xpm_file
 
    pixmapwid = gtk_pixmap_new 
 
    /* Create a label for the button */ 
  
 
    /* Pack the pixmap and label into the box */ 
    gtk_box_pack_start (GTK_BOX (box1), 
                        pixmapwid, TRUE, TRUE, 0); 
 
    //gtk_box_pack_start (GTK_BOX (box1), label, FALSE, F
 
    gtk_widget_show(pixmapwid); 

 213



    //gtk_widget_show(label); 
 
    return(box1); 

 int i; 

 { 

i], TRUE); 

OF_BUTTONS; i++) 
uttons[i], FALSE); 

 

e (message_window); 
gtk_text_freeze (GTK_TEXT(message_window)); 

EXT(message_window), NULL,  
e_window->style->black, NULL,  

   msgArray[msg], -1); 
= 0xA0 && msg <= 0xAF) 

TEXT(message_window), NULL,  
   &message_window->style->black, NULL,  

dow->style->black, NULL,  
   MSG_C[msg & 0x0F], -1); 

0 && msg <= 0xEF) 
window), NULL,  

_window->style->black, NULL,  
   MSG_E[msg & 0x0F], -1); 

L,  
>style->black, NULL,  

   msgArray[1], -1); 

 

   printf(msgArray[msg]); 

sg & 0x0F]); 
g <= 0xCF) 

 & 0x0F]); 

} 
 
void 
buttonControl(char cmd) 
{ 
  
/* 
   if(cmd) 
  
     for(i=0; i<NUM_OF_BUTTONS; i++) 
        gtk_widget_set_sensitive(all_buttons[
   } 
   else 
   { 
     for(i=0; i<NUM_
        gtk_widget_set_sensitive(all_b
   } 
*/
 
   return; 
} 
 
void 
messageWrite(short msg) 
{ 
 
/* 
  gtk_widget_realiz
  
 
  if(msg < MSGFF) 
     gtk_text_insert (GTK_T
    &messag
 
  else if(msg >
     gtk_text_insert (GTK_
 
    MSG_A[msg & 0x0F], -1); 
  else if(msg >= 0xC0 && msg <= 0xCF) 
     gtk_text_insert (GTK_TEXT(message_window), NULL,  
    &message_win
 
  else if(msg >= 0xE
     gtk_text_insert (GTK_TEXT(message_
    &message
 
  else 
     gtk_text_insert (GTK_TEXT(message_window), NUL
    &message_window-
 
 
 
  gtk_text_thaw (GTK_TEXT(message_window));
*/ 
 
  if(msg < MSGFF) 
  
  else if(msg >= 0xA0 && msg <= 0xAF) 
     printf(MSG_A[m
  else if(msg >= 0xC0 && ms
     printf(MSG_C[msg

 214



  else if(msg >= 0xE0 && msg <= 0xEF) 
_E[msg & 0x0F]); 

   printf(msgArray[1]); 

main.c 
**************************************** 

4 

**/ 

 "callbacks.c" 
 

} 

us = 0; 

     printf(MSG
  else 
  
 
  return; 
} 
 

 
/*********************
 * main.c 
 *  
 * Author: Stephen Nestinger 
 * Date:   September 24th, 200
 * 
 **********************************************************
 
#ifdef HAVE_CONFIG_H 
#  include <config.h> 
#endif 
 
#include <gtk/gtk.h> 
 
//#include "callbacks.h" 
#include "interface.h" 
 
#pragma import
#pragma import "interface.c"
int 
main (int argc, char *argv[]) 
{ 
  GtkWidget *mainwin; 
  gtk_set_locale (); 
  gtk_init (&argc, &argv); 
 
  mainwin = create_mainwin (); 
  gtk_widget_show (mainwin); 
 
  gtk_main (); 
  return 0; 

 

server.c 
 
#include "server.h" 
#include "interface.h" 

" #include "control.h
 
// Global Variables 

 0; char serverStatus =
char connStatus = 0; 
int conn_s = 0; 
t list_s; in

char threadStat
pthread_t serverThread; 
ort int command; sh

char stopThread = 0; 
 

types // Private function proto
void* tc_server(void *arg); 
void threadCleanup (void * arg); 

 215



 
#ifdef UDP 

trly_addr; 

rStatus, if high, return -100 
 if(serverStatus) 

 server thread tc_server 
 >0, on 

rThread, NULL, tc_server, NULL); 

t tc_serverStop(void) 

utdown(list_s, SHUT_RDWR); 
   close(list_s); 

 return 0; 

rt int cmd) 

 the serverStatus, if low, no connection so return -100 

,  
, *trly_addr_len);  

mmand, sizeof(command)); 
ndif 

ruct sockaddr_in remoteaddr; 
d; 

 
]; 

 struct timeval tv_sock; 

t sockaddr*)malloc(sizeof(struct sockaddr)); 
ocklen_t*)malloc(sizeof(socklen_t)); 

   struct sockaddr *
   socklen_t *trly_addr_len; 
#endif 
 
int tc_serverStart(void) 
{ 
   // Check the serve
  
      return -100; 
 
   stopThread = 0; 
 
   // Start the
   // pthread_create() should return 0 on success and EAGAIN,
error 
   return pthread_create(&serve
} 
 
in
{ 
   // Check the serverStatus, if high, return -100 
   if(!serverStatus) 
      return -100; 
 
   sh

   stopThread = 1; 
 
  
} 
 
int tc_serverSend(sho
{ 
   command = cmd; 
   // Check
   if(!serverStatus) 
      return -100; 
 
#ifdef UDP 
   return sendto(list_s, &command, sizeof(command), 0
                      trly_addr
#else 
   return write(conn_s, &co
#e
} 
 
void* tc_server(void *arg) 
{ 
   short int port; 
   struct sockaddr_in servaddr; 
   st
   short int comman
   int cc; 
   int addr_len; 
   int bytecount;
   char message[100
  
   unsigned int yes = 1; 
 
#ifdef UDP 
   trly_addr = (struc
   trly_addr_len = (s

 216



#endif 

ady, change the server status 
 

= PF_INET; 
); 

OCK_DGRAM, 0); 

kopt(list_s, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)) < 
0)  

 failed"); 

*)&servaddr, sizeof(servaddr) ) < 

ind!\n"); 

hread Stopped\n"); 

pt(list_s, NULL, NULL))>0) 

opt(conn_s, SOL_SOCKET, SO_KEEPALIVE, &yes,     
  

sock, 

    setsockopt(conn_s, SOL_SOCKET, SO_RCVTIMEO,  &tv_sock, 

G09); 

NS_ON); 

      do  

cv(conn_s, &command, sizeof(command), 0); 

 on PPC based Mac which is Big Endian */ 
 #ifdef PPC 

       char *from, *to; 

 
   // If the server is re
   serverStatus = 1;
   threadStatus = 1; 
 
   servaddr.sin_family 
   servaddr.sin_port = htons(PORT_NUM
   servaddr.sin_addr.s_addr = INADDR_ANY; 
 
   tv_sock.tv_sec  = 60; 
   tv_sock.tv_usec = 0; 
 
   addr_len = sizeof(struct sockaddr_in); 
 
#ifndef UDP 
   list_s = socket(PF_INET, SOCK_STREAM, 0); 
#else 
   list_s = socket(PF_INET, S
#endif 
 
   if (setsoc

   { 
 perror("Reusing ADDR
 exit(1); 
   } 
 
 
   if ( bind(list_s, (struct sockaddr
0)  
   { 
       fprintf(stderr,"Could not b
       threadStatus = 0; 
       serverStatus = 0; 
       printf("Server T
       return NULL; 
   } 
 
#ifndef UDP 
   listen(list_s, 1); 
 
   while( (conn_s = acce
   { 
      setsock
sizeof(yes));
      setsockopt(conn_s, SOL_SOCKET, SO_SNDTIMEO,  &tv_
sizeof(tv_sock));  
  
sizeof(tv_sock));  
 
      //messageWrite(MS
      printf("conn accepted\n"); 
      buttonControl(BUTTO
 

      { 
         bytecount = re
 
         /* Added to work
        
         short int temp; 
  
         from = (char *)&command; 

 217



         to = (char *)&temp; 

   from+1,  1); 
    command = temp; 

         //printf("message from trolley = %x\n", command); 

d) 
       { 

and, sizeof(command), 0); 

ndian */ 

to+1, from,    1); 
             memcpy(to,   from+1,  1); 

ommand); 

          case TRM_BRAKES_ON:           

        break; 
_OFF:           

        break; 
   case TRM_DET_ENABLE:           

d\n"); 

            case TRM_DET_DISABLE:           

} 

hile(bytecount > 0); 

n"); 

ttons 
tonControl(BUTTONS_OFF); 

 } 

e(!stopThread) 

izeof(command), 0, 
 trly_addr_len) > 0)) 

   case TRM_SPEED: 
 &command, sizeof(command), 

 now set to %d\n", command); 

are fully actuated\n"); 
      break; 

); 

          case TRM_DET_ENABLE:           

         memcpy(to+1, from,    1); 
         memcpy(to,
     

         #endif 
 
         switch(comman
  
            case TRM_SPEED: 
               bytecount = recv(conn_s, &comm
 
               /* Added to work on PPC based Mac which is Big E
               #ifdef PPC 
               memcpy(
  
               command = temp; 
               #endif 
 
               printf("Speed now set to %d\n", c
               break; 
  
               printf("Breaks are fully actuated\n"); 
       
            case TRM_BRAKES
               printf("Breaks are fully open\n"); 
       
         
               printf("Power to the detector enable
               break; 

               printf("Power to the detector disabled\n"); 
               break; 
         
 
      } w
      //messageWrite(MSG10); 
      printf("disconnected\
      close(conn_s); 
 
      // Disable all of the bu
      but
  
#else 
   whil
   { 
      if( (bytecount = recvfrom(list_s, &command, s
                  trly_addr,
      { 
         switch(command) 
         { 
         
               bytecount = recvfrom(list_s,
0, 
                  trly_addr, trly_addr_len); 
               printf("Speed
               break; 
            case TRM_BRAKES_ON:           
               printf("Breaks 
         
            case TRM_BRAKES_OFF:           
               printf("Breaks are fully open\n"
               break; 
  

 218



               printf("Power to the detector enabled\n"); 
               break; 
            case TRM_DET_DISABLE:           
               printf("Power to the detector disabled\n"); 

; 

 = TYPE_SERV; 
o(list_s, &command, sizeof(command), 0,  

                    trly_addr, *trly_addr_len);  

#endif 

, change the server and thread status 

 printf("Server Thread Stopped\n"); 

               break
            case TYPE_TRLY:           
               printf("Trolley found\n"); 
               command
               sendt
  
               break; 
         } 
      } 
   } 

 
   // Before we exit
   threadStatus = 0; 
   serverStatus = 0; 
  
   return 0; 
} 
 

 219



Makefile 
#-------------------------------------------------

ey c
--------------- 

ontrol program 
--- 

d variables from the command line 
tput 

 -lpthread 

(OBJ) \ 

 
ontrol  

 
 $@ $(OBJS) $(LIBS) 

 $@) 
(OBJS2) $(LIBS) 

) 

------------------------------------------ 

# Makefile for the troll
# -----------------------------------------------------------
 
# importe
# use make V=1 if you wish to have verbose ou
ifndef V 
  quiet = @ 
dif en

 
ifdef UDP 
  DEF = -DUDP 
endif 
 
ifdef TEST 
  TARGET2 = testClient 

$(OBJ)   OBJS2 = src/client.
endif 
 
# Macros 
CC     = $(quiet) gcc 
RM     = $(quiet) -rm 
CFLAGS = -g -DPPC 

nfig --cflags` IFLAGS = -I include `gtk-co
   = `gtk-config --libs`LIBS

OBJ    = o 
OBJS   = src/main.$(OBJ)      \ 

 src/interface.$(OBJ) \  
  src/callbacks.$
  src/server.$(OBJ) \ 

J)   src/control.$(OB
t.$(OBJ)  src/clien

 = trolleyCTARGET
 
all:: $(TARGET) $(TARGET2) 
 
# Explicit rules 
$(TARGET):: $(OBJS) 

echo Building $@) $(if $(quiet), @ 
AGS) -o $(CC) $(CFL

 
$(TARGET2):: $(OBJS2) 

et), @ echo Building $(if $(qui
 $(CC) $(CFLAGS) -o $@ $
 
%.$(OBJ) :: %.c  
 $(if $(quiet), @ echo Compiling $@) 
 $(CC) $(CFLAGS) -c $*.c -o $@ $(IFLAGS) $(DEF) 
 
.PHONY: clean 

n:: clea
 $(if $(quiet), @ echo Removing $(OBJS)
 $(RM) -f $(OBJS) $(OBJS2) 
 
# --------------------

 220



Appendix F: Trolley Microprocessor Program 

*********************************************** 
ess Rabbit Controller 

bell 

 *********************************************************************/ 

SE 

ifi debugging info 

  "10.0.0.11"  // IP address of server 
_PORT 2003         // Port for server connection 

  2 

ters before sock_init() 
mode: BSS = Managed, IBSS = Ad-Hoc 
ccess point you wish to connect to 

or disable WEB: 0 = disable 
\ 

ecurity is enabled 
WEP_USEKEY, "1"            ,0); \ 

"ababababab"   ,0); 

im drivers 

working 
 dcrtcp.lib 

ks on start-up 
or LED on 

         1      // bit setting for LED off 
pen socket 

  #define DRIVE_FORWARD       0      // Drive motor direction settings 
l Drive! 
on setting 

K       1      // 0 -> Lock; 0 -> Unlock 
_ON           0      // Brake motor enable 

 
*****/*****************

lley Wirel *  Tro
 *  created & modified by: 

stinger& Matt Camp *     Stephen Ne
 *  last change: 9-8-2006 

 
-------------------- //------------------------------------

// Defines 
//-------------------------------------------------------- 

onal tcp stack debugging info   // uncomment for additi
define DCRTCP_VERBO  //#

 
nal CF W  // uncomment the following for additio

  //#define CF_VERBOSE 
  //#define CF_DEBUG 
 

nnected   // uncomment when programming cable co
  //#define PROGRAM 
 
  // What is this for? 
#memmap xmem   

 
  // Setup default network parameters 
  // Type 3 has Ethernet and DHCP 

 100   #define TCPCONFIG  
fine REMOTE_IP   #de

  #define REMOTE
  #define CMD_LENGTH
 

ifi paramen  // Set the default w
  //   MODE     = connection 

SSID     = ESSID of a  //   
  //   WEP_FLAG = enable 
  #define WIFI_INIT 
    pd_ioctl(0,WIFI_MODE,       "BSS"          ,0); \ 
    pd_ioctl(0,WIFI_SSID,       "TROLLEYNET"   ,0); \ 
    pd_ioctl(0,WIFI_WEP_FLAG,   "0"            ,0); 

 s    // Use only when WEP
pd_ioctl(0,WIFI_    // 

    // pd_ioctl(0,WIFI_WEP_KEY0,   
 
  // Bring in the cfpr
  //   Linsys uses the prism chipset 
  #define PKTDRV cfprism.lib 
 
  // Bring in TCP stack 

Strictly for net  //   
#use  

 
 
  // System Definitions 
  #define BLINK_TIMES         5      // Number of blin

        0      // bit setting f  #define LED_ON      
#define LED_OFF      

  #define SOCK_TRIES          5      // Number of tries to o

  #define DRIVE_BACKWARD      1      // Trolley is Rear Whee
       0      // Brake motor directi  #define BRAKES_LOCK  

fine BRAKES_UNLOC  #de
  #define BRAKES
  #define BRAKES_OFF          1      // Brake motor disable 

 221



  #define DETECTOR_ON         0      // turn on detector power relay 
 // turn off detector power relay 

        1      // for "movingStatus" variable in 
   0      // continuous move = 1, stopped = 0 

ne MOTOR_BRAKE_ON      0      // H-Bridge motor brake control 
     1      // 0 -> On; 1 -> Off 

  #define UP                  1      // direction control for ramp 

     "    "     " 
        10     // sleep time for a single small 

ne BIG_STEP_LENGTH     50     // sleep time for a single big step 

rt Bit Defines 

 left brake 

AKE_SWITCH_UNLOCK  1 //  "   "   "   "     "  

ne PORT_RIGHT_BRAKE_SWITCH_LOCK   2 //  "   "   "  right  "   
ck   " 

RAKE_SWITCH_UNLOCK 3 //  "   "   "   "     "  

CTION      1 //port bit for left brake 

E_CONTROL        2 //port bit for left brake 
ntrol 

ght brake 

ght brake 
control 

for Drive Motor 
RIVE_MOTOR_CONTROL       4 //port bit for drive motor 

0 //port bit for drive motor 

ER            5 // port for detector power 

  #define PORT_LED_1  7 // port bit for LED 1; port G bit 7 
#define PORT_LED_2  5 // port bit for LED 2; port F bit 5 

t C bit 0 

rt bit for LED 6; port C bit 4 
fine PORT_LED_7  6 // port bit for LED 7; port C bit 6 

 
t clock freq on pwm for drive 

/ Set pwm channel to 0 -> Port F4 

 
   0xA1   // Trolley System 

PEED              0xB0   // Sending drive motor duty 

actuated 
   // Brakes are fully open 

  #define DETECTOR_OFF        1     
  #define MOVING      
  #define NOT_MOVING       
  #defi
  #define MOTOR_BRAKE_OFF

function 
  #define DOWN                0      //    "         "
  #define STEP_LENGTH 
step 
  #defi
 
  // Po
  // for Brakes 
  #define PORT_LEFT_BRAKE_SWITCH_LOCK    0 //port bit for
lock switch 
  #define PORT_LEFT_BR
unlock  " 
  #defi
lo
  #define PORT_RIGHT_B
unlock  " 
  #define PORT_LEFT_BRAKE_DIRE
direction 
  #define PORT_LEFT_BRAK
co
  #define PORT_RIGHT_BRAKE_DIRECTION     3 //port bit for ri
direction 
  #define PORT_RIGHT_BRAKE_CONTROL       4 //port bit for ri

  // 
  #define PORT_D
control 
  #define PORT_DRIVE_MOTOR_DIRECTION     
direction 
  // for Motors 
  #define PORT_MOTOR_BRAKE               6 // port for motor brake 
  // for Detector Power Relay 
  #define PORT_DETECTOR_POW
  // for LEDs 

  
  #define PORT_LED_3  6 // port bit for LED 3; port F bit 6 
  #define PORT_LED_4  0 // port bit for LED 4; por
  #define PORT_LED_5  2 // port bit for LED 5; port C bit 2 
  #define PORT_LED_6  4 // po
  #de
 
  // PWM Definitions
  #define PWM_FREQ            1000   // Se
motor 
  #define PWM_CHANNEL         0      /
  #define PWM_OPTION          0      // Set pwm option to single block 
 
  // System Types 
  #define TYPE_LBDS              0xA0   // LBDS System
  #define TYPE_TRLY           
 
  // Trolley Messages to return to user 
  #define TRM_S
cycle 
  #define TRM_BRAKES_ON          0xB1   // Brakes are fully 
  #define TRM_BRAKES_OFF         0xB2

 222



  #define TRM_DET_ENABLE         0xB3   // Power to detector enabled 
  #define TRM_DET_DISABLE        0xB4   // Power to detector enabled 

SING       0xB5   // Closing TCP connection 

// Trolley control commands -> Trolley is Rear Wheel Drive 
RWARD       0xC0   // Step the trolley forward 

#define TRC_STEP_BACKWARD      0xC1   // Step the trolley backward 
     0xC2   // Continously move the trolley 

   0xC3   // Continously move the trolley 
 

#define TRC_BRAKE              0xC4   // Engage trolley brakes 
UNBRAKE            0xC5   // Disengage trolley brakes 

           0xC6   // Speed up the trolley 
#define TRC_SPEED_DOWN         0xC7   // Slow down the trolley 

on 
TECTOR_POWER_ON  0xC9   // Turn on power to detector 

rn off power to detector 
Conn 

Trolley errors 
           0xE0   // Communications established 
           0xE1   // Communication failure 

#define TRE_NET_DHCP_FB        0xE2   // DHCP address with fallbacks 
FB       0xE3   // DHCP address without 

s 
     0xE4   // Brakes not working properly 

e TRE_MOTOR_FAIL         0xE5   // Drive motor not responding 

m specific defines 
TRLY     // What type am I 

//-------------------------------------------------------- 

--- 

 portInit(void);         //     "      Rabbit ports 
it(void);         //     "      communications 

  //     "      PWM signal 
int openTCP(void);          // open tcp socket 

int stepForward(void);      // step trolley Forward once 
kward(void);     // step trolley Backward once 

ontForward(void);      // move trolley continuously Froward 
y continuously Backward 

p(void);             // stop continuous movement for trolley 
     // engage brakes 

edUp(void);          // increase drive speed -> increase PWM 
cle 

dDown(void);        // decrease drive speed -> decrease PWM 
cle 

 status -> locked = 0 & 
= 1 

);   // turn on power to detector 

s drive motor up and down for smooth motion 
ramp(unsigned int time, unsigned int interval, char dir); 

// delay function for multiples of 100 ms 
p(unsigned int hundMS); 

  #define TRM_CONN_CLO
 
  
  #define TRC_STEP_FO
  
  #define TRC_CONT_FORWARD  
Forward 
  #define TRC_CONT_BACKWARD   
Backward
  
  #define TRC_
  #define TRC_SPEED_UP
  
  #define TRC_STOP               0xC8   // Stop trolley moti
  #define TRC_DE
  #define TRC_DETECTOR_POWER_OFF 0xCA   // Tu
  #define TRC_CLOSE_CONN         0xCB   // Close the TCP/IP 
 
  // 
  #define TRE_NET_OK  
  #define TRE_NET_FAIL
  
  #define TRE_NET_DHCP_N
fallback
  #define TRE_BRAKE_FAIL    
  #defin
 
  // This syte
  #define MY_TYPE TYPE_
 
//-------------------------------------------------------- 
//  End Defines 

 
//-----------------------------------------------------
// Function Prototypes 
//-------------------------------------------------------- 
  int baseSysInit(void);      // initialize system 
  int
  int sockIn
  int pwmInit(void);        
  
  int closeTCP(void);         // close tcp socket 
  
  int stepBac
  int c
  int contBackward(void);     // move trolle
  int sto
  int brake(void);       
  int unbrake(void);          // disengage brakes 
  int spe
duty cy
  int spee
duty cy
  int checkBrakes(void);      // check brake
unlocked 
  int enableDetector(void
  int disableDetector(void);  // turn off power to detector 
  // ramp
  void 
  
  void trSlee

 223



  // delay function for multiple of 1 ms 
void trMSleep(unsigned int ms); 

ntinuous 
move 

ting a function 

----------------------------------------------------- 

--------------------------------------------------- 

cp_Socket tcpsock;   // socket for tcp communication 
     // incoming command storage 

cle for drive motor as seen 

ingStatus;           // determine if in continuous move or not 
int left_brake_status;       // status of left brake 

s of right brake 

           // set to make only one step happen per 

           // controls drive direction 
  int brake_dir;               // controls brake direction 

buffer on tcp socket 
//-------------------------------------------------------- 

bal Variables 

-------------------------------------------------------- 

----------------------------- 
void main() 

    int error;                     // errors returned from functions 
ovingStatus = NOT_MOVING;     // set moving status to 0, not moving 

    ping_who = resolve(REMOTE_IP); // get ip address for ping connection 

 System: 

rt up 
 

 
akes on startup 

s are engaged, if not, engage them 
 brakes 

plete 

 point 
  error = sockInit();  // Initialize packet driver system 

 for communication 

 

  
  // check for continuous command to move while executing co

  void continuousMoveCheck(void); 
  // clear buffered commands received while execu
  void clearRecBuffer(void); 
//-------------------------------------------------------- 
// End Function Prototypes 
//---
 
//-----
// Global Variables 
//-------------------------------------------------------- 
  static t
  int command;            
  unsigned int duty_cycle;     // pwm duty cy
by user 
  char mov
  
  int right_brake_status;      // statu
  longword ping_who;           // resolve ip address of server 
//  int step_complete;
command 
//  int drive_dir;    
//
//  unsigned int rec_buf_size;   // size of receive 

// End Glo
//-------------------------------------------------------- 
 
//
// Main 
//---------------------------
  
  { 
 
    struct _wifi_status wstatus;   // for wifi 

    m

check 
 
    // Initialization Base
    //   Intialize the ports 
    //   Flash LEDs at sta
    //   Check status of the system
    //   Output LED status
    //   Not sure want to engage br
      //   Make sure brake
      //   Blink LED while engaging
      //   Update status of LED when braking com
    baseSysInit();  // Initialize required ports 
 
    // Intialize Communications: 
    //   Initialize packet driver system 
    //   Connect to access
  
 
    // Open TCP/IP sockect
    // Try to connect to server 
    openTCP(); 

    // get size of receive buffer for when need to read in 

 224



    // unwanted buffered commands 

%d\n", rec_buf_size); 

cp_tick(&tcpsock);   // forces ethernet backgroup processes to 

     // if port closed, stop everything and enable brakes 

pd_ioctl( 0,WIFI_STATUS, (char *)&wstatus, sizeof(wstatus) ); 
= 5 || !sock_established(&tcpsock)) 

 

       // deal with controls 

  // clear input if more than one is waiting 

  clearRecBuffer(); 

     // Read message from trolley control program 
ock_aread ( &tcpsock, (char *)&command, CMD_LENGTH )) == 

        #ifdef PROGRAM 
         printf("Command received, %d: %X\n", command, command); 

          //   sizeof(command), sizeof(short)); 
          #endif// PROGRAM 
       } 
 
 
       // Trolley Commands -> Trolley is Rear Wheel Drive 
       switch ( command ) 
       { 
         case TRC_STEP_FORWARD:       // Step the trolley forward 
           stepForward(); 
           break; 
         case TRC_STEP_BACKWARD:      // Step the trolley backward 
           stepBackward(); 
           break; 
         case TRC_CONT_FORWARD:       // Continuously move trolley 
forward 
           //contForward(); 
           bigStepForward(); // Continuous not working, use big step 
instead 
           break; 
         case TRC_CONT_BACKWARD:      // Continuously move trolley 
backward 
           //contBackward(); 

    //rec_buf_size = sock_rbsize(&tcpsock); 
    //printf("rec_buf_size = 
 
    while(1) 
    { 
 
       t
go 
 
       // Check the status of the TCP/IP socket 
       // if connected, wait for commands ; if not, open connection 
again 
  
       // try to re-establish communication 
       
       if(wstatus.status =
       { 
          stop(); 
          openTCP(); 
       } 
       //trSleep(5); 
       // printf("Socket Established = %d\n",
sock_established(&tcpsock)); 
 
       // process commands 

       command = 0; // reset command input 
 
       // Check for unwanted buffered commands 
     
       if ( sock_bytesready(&tcpsock) > 2 ) 
        
 
  
       if ( ( s
2 ) 
       { 
  
 
          //printf("sizeof(command) = %d  --- sizeof(short) = %d\n", 

 225



 226

           bigStepBackward(); // Continuous not working, use big step 
instead 
           break; 
         case TRC_STOP:               // Stop the trolley 
           stop(); 
           break; 
         case TRC_BRAKE:              // Engage trolley brakes 
           brake(); 
           break; 
         case TRC_UNBRAKE:            // Disengage trolley brakes 
          unbrake(); 
           break; 
         case TRC_SPEED_UP:           // Speed up the trolley 
           speedUp(); 
           break; 
         case TRC_SPEED_DOWN:         // Slow down the trolley 
           speedDown(); 
           break; 
         case TRC_DETECTOR_POWER_ON:  // turn on power to detector 
           enableDetector(); 
           break; 
         case TRC_DETECTOR_POWER_OFF: // turn on power to detector 
           disableDetector(); 
           break; 
         case TRC_CLOSE_CONN:         // close tcp connection 
           stop(); 
           closeTCP(); 
           break; 
       } // end switch for trolley commands 
 
       // blink in main loop 
       BitWrPortI(PGDR, &PGDRShadow, LED_ON, PORT_LED_1); 
       trMSleep(25); 
       BitWrPortI(PGDR, &PGDRShadow, LED_OFF, PORT_LED_1); 
       trMSleep(25); 
 
    } // end while(1) 
 
  } // end main() 
 
//-------------------------------------------------------- 
// baseSysInit() : Initialization Base System: 
//     Intialize the ports 
//     Flash LEDs at start up 
//     Check status of the system 
//     Output LED status 
//     Make sure brakes are engaged, if not, engage them 
//     Blink LED while engaging brakes 
//     Update status of LED when braking complete 
//-------------------------------------------------------- 
  int baseSysInit(void) 
  { 
    int i; 
    i = 0; 
 
    portInit(); // initialize the ports 
    pwmInit();  // initialize pwm for drive motor 
 
    // Turn all LEDs off 
    BitWrPortI(PGDR, &PGDRShadow, LED_OFF, PORT_LED_1); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_2); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); 
    #ifndef PROGRAM 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_4); 



 227

    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_5); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_6); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_7); 
    #endif// NOT PROGRAM 
 
    while(1)// Blink LEDs on startup 
    { 
       if ( i >= BLINK_TIMES ) 
         break; 
 
       #ifndef PROGRAM 
       BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_7); 
       #endif// NOT PROGRAM 
       #ifdef PROGRAM 
       BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); 
       #endif// PROGRAM 
       BitWrPortI(PGDR, &PGDRShadow, LED_ON, PORT_LED_1); 
       trMSleep(25); 
       BitWrPortI(PGDR, &PGDRShadow, LED_OFF, PORT_LED_1); 
       BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_2); 
       trMSleep(25); 
       BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_2); 
       BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_3); 
       trMSleep(25); 
       #ifndef PROGRAM 
       BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); 
       BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_4); 
       trMSleep(25); 
       BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_4); 
       BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_5); 
       trMSleep(25); 
       BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_5); 
       BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_6); 
       trMSleep(25); 
       BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_6); 
       BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_7); 
       trMSleep(25); 
       #endif// NOT PROGRAM 
 
       i++; 
    } // end while(1) 
 
    // Turn all LEDs off 
    BitWrPortI(PGDR, &PGDRShadow, LED_OFF, PORT_LED_1); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_2); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); 
    #ifndef PROGRAM 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_4); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_5); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_6); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_7); 
    #endif// NOT PROGRAM 
 
    // turn off motor brake to allow motors to spin 
    BitWrPortI(PGDR, &PGDRShadow, MOTOR_BRAKE_OFF, PORT_MOTOR_BRAKE); 
 
    // Check brake status and set status variables 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
 
    // Not sure about engaging brakes at startup 
    // engage brakes if not already 
    // TEST THIS LOGIC BEFORE RUNNING TROLLEY WITH IT! 
    // if ( left_brake_status != 1 || right_brake_status != 1 ) 



 228

    //   brake(); 
    // TEST THIS LOGIC BEFORE RUNNING TROLLEY WITH IT! 
 
    return 0; 
  } // end baseSysInit() 
 
//-------------------------------------------------------- 
// pwmInit(): sets pwm clock freq and set duty cycle 
//-------------------------------------------------------- 
  int pwmInit(void) 
  { 
    unsigned long set_freq; 
 
    set_freq = pwm_init(PWM_FREQ);  // set pwm clock freq 
    #ifdef PROGRAM 
    printf("Clock freq set for drive motor pwm = %d\n", set_freq); 
    #endif// PROGRAM 
 
    // set duty cycle to 0% -> really @ 100% cause logic reversed 
    // returns 0 = okay 
    if ( pwm_set ( PWM_CHANNEL, 1024, PWM_OPTION ) ) 
    { 
      #ifdef PROGRAM 
      printf("ERROR - problems initializing pwm channel\n"); 
      #endif// PROGRAM 
    } 
 
    // set initial duty cycle to 100% for first moves 
    // possible pwm setting 0 - 1024 -> means ticks on = duty cycle 
    // because of logic reverse: 
    // setting pwm to 0 => 100% motor on 
    // setting pwm to 1024 => 0% motor on 
    // when using duty_cycle, use ((100 - duty_cycle) * 10.24) 
    // cast to (unsigned int) 
    duty_cycle = 100; 
 
    return 0; 
  } // end pwmInit() 
 
//-------------------------------------------------------- 
// sockInit():  initializes the packet driver system 
//              prints out status 
//   return value: 0 = ethernet initialized 
//                -1 = ethernet not working for some reason 
//-------------------------------------------------------- 
  int sockInit(void) 
  { 
    int status;            // system status 
    status = sock_init();  // initialize the packet driver system 
    switch(status) 
    { 
       case 0: 
           #ifdef PROGRAM 
           printf("Network was successfully initialized\n"); 
           #endif// PROGRAM 
           break; 
       case 1: 
           #ifdef PROGRAM 
           printf("Ethernet packet driver initialization failed\n"); 
           #endif// PROGRAM 
           return -1; 
       case 2: 
           #ifdef PROGRAM 
           printf("DHCP failed, using fallback definition\n"); 



 229

           #endif// PROGRAM 
           return -1; 
       case 3: 
           #ifdef PROGRAM 
           printf("DHCP failed, no fallbacks defined\n"); 
           #endif// PROGRAM 
           return -1; 
       default: 
    } 
 
    // Possible implimentation in future for security 
    // Check to see if we are connected to IEL 
    //   if not keep trying 
 
    return 0; 
  } // end sockInit() 
 
//-------------------------------------------------------- 
// openTCP():  opens TCP socket 
//-------------------------------------------------------- 
  int openTCP(void) 
  { 
    short cmd; 
    int i; 
    int tries; 
 
    #ifdef PROGRAM 
    printf("Entering openTCP...\n"); 
    #endif// PROGRAM 
    sock_abort(&tcpsock); 
 
    while(1) 
    { 
       #ifdef PROGRAM 
       printf("\nCall TCP_OPEN()\n"); 
       #endif// PROGRAM 
       tcp_tick(NULL); 
 
       if(tcp_open ( &tcpsock, 1050, resolve(REMOTE_IP), REMOTE_PORT, 
NULL )) 
       { 
          tries = 0; 
          while ( !sock_established ( &tcpsock ) && 
                   sock_bytesready(&tcpsock) == -1 && 
                   tries++ < SOCK_TRIES) 
          { 
             tcp_tick(&tcpsock); 
 
             #ifdef PROGRAM 
             printf("\tWaiting to establish connection\n"); 
             printf("Est = %d - tick = %d\n\n", 
               sock_established(&tcpsock), tcp_tick(&tcpsock)); 
             #endif// PROGRAM 
             // blinking LEDs for establishing connection 
             BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_2); 
             trSleep(2); 
             BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_2); 
             trSleep(2); 
         } // end while ( !socket established etc... ) 
       } 
 
       // if sock is successfully established, break from loop 
       if(sock_established ( &tcpsock )) 
          break; 



 230

 
       #ifdef PROGRAM 
       printf("TCP_OPEN() Unsuccessfull\n\n"); 
       #endif// PROGRAM 
 
       // quick blink, tried to estblish socket SOCK_TRIES times 
       // and not successful, will retry next time thru while(1) loop 
       for(i=0; i<BLINK_TIMES; i++) 
       { 
         BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_2); 
         trMSleep(50); 
         BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_2); 
         trMSleep(50); 
       } 
    } // end while(1) 
 
    cmd = TRE_NET_OK; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
    printf("TCP esablished successfully!\n\n"); 
 
    #ifdef PROGRAM 
    printf("Leaving openTCP...\n"); 
    #endif// PROGRAM 
  } // end openTCP() 
 
//-------------------------------------------------------- 
// closeTCP():  opens TCP socket 
//-------------------------------------------------------- 
  int closeTCP(void) 
  { 
     sock_awrite(&tcpsock, (char *)TRM_CONN_CLOSING, CMD_LENGTH); 
     #ifdef PROGRAM 
     printf("Closing conn!\n"); 
     #endif// PROGRAM 
     tcp_close(&tcpsock); 
  } // end closeTCP() 
 
//-------------------------------------------------------- 
// stop(): stop continuous trolley movement 
//-------------------------------------------------------- 
  int stop(void) 
  { 
    #ifdef PROGRAM 
    printf("running stop\n"); 
    #endif// PROGRAM 
 
    if(movingStatus) 
       ramp(1,1,DOWN); 
    else 
    { 
      pwm_set( PWM_CHANNEL, 1024, PWM_OPTION ); 
    } 
    // turn off brakes motors 
    BitWrPortI(PGDR, &PGDRShadow, BRAKES_OFF, PORT_LEFT_BRAKE_CONTROL); 
    BitWrPortI(PGDR, &PGDRShadow, BRAKES_OFF, PORT_RIGHT_BRAKE_CONTROL); 
 
    // Turn all LEDs off 
    BitWrPortI(PGDR, &PGDRShadow, LED_OFF, PORT_LED_1); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_2); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); 
    #ifndef PROGRAM 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_4); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_5); 
    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_6); 



 231

    BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_7); 
    #endif// NOT PROGRAM 
 
    // read Detector Power status and reset LED - only persistent LED 
    if ( (BitRdPortI(PGDR, PORT_DETECTOR_POWER)) == DETECTOR_ON ) 
    { 
       BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_3); 
    } 
 
    movingStatus = NOT_MOVING; 
  } // end stop() 
 
//-------------------------------------------------------- 
// stepForward(): step trolley Forward once 
//-------------------------------------------------------- 
  int stepForward(void) 
  { 
    #ifdef PROGRAM 
    printf("running stepForward\n"); 
    #endif// PROGRAM 
 
    // set drive direction 
    BitWrPortI(PGDR, &PGDRShadow, DRIVE_FORWARD, 
PORT_DRIVE_MOTOR_DIRECTION); 
 
    // check if brakes are on with _brake_status variable 
    // if true -> run unbrake() 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
    if ( left_brake_status != -1 || right_brake_status != -1 ) 
       unbrake(); 
 
    // ramp up to speed, move set step length, ramp down 
    ramp(1,1,UP); 
    trSleep(STEP_LENGTH); 
    ramp(1,1,DOWN); 
 
    return 0; 
  } // end stepForward() 
 
//-------------------------------------------------------- 
// stepBackward(): step trolley Backward once 
//-------------------------------------------------------- 
  int stepBackward(void) 
  { 
    #ifdef PROGRAM 
    printf("running stepBackward\n"); 
    #endif// PROGRAM 
 
    // set drive direction 
    BitWrPortI(PGDR, &PGDRShadow, DRIVE_BACKWARD, 
PORT_DRIVE_MOTOR_DIRECTION); 
 
    // check if brakes are on with _brake_status variable 
    // if true -> run unbrake() 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
    if ( left_brake_status != -1 || right_brake_status != -1 ) 
       unbrake(); 
 
    // ramp up to speed, move set step length, ramp down 
    ramp(1,1,UP); 
    trSleep(STEP_LENGTH); 
    ramp(1,1,DOWN); 



 232

 
    return 0; 
  } // end stepBackward() 
 
//-------------------------------------------------------- 
// bigStepForward(): take a big step Forward once 
//-------------------------------------------------------- 
  int bigStepForward(void) 
  { 
    #ifdef PROGRAM 
    printf("running bigStepForward\n"); 
    #endif// PROGRAM 
 
    // set drive direction 
    BitWrPortI(PGDR, &PGDRShadow, DRIVE_FORWARD, 
PORT_DRIVE_MOTOR_DIRECTION); 
 
    // check if brakes are on with _brake_status variable 
    // if true -> run unbrake() 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
    if ( left_brake_status != -1 || right_brake_status != -1 ) 
       unbrake(); 
 
    // ramp up to speed, move set step length, ramp down 
    ramp(1,1,UP); 
    trSleep(BIG_STEP_LENGTH); 
    ramp(1,1,DOWN); 
 
    return 0; 
  } // end bigStepForward() 
 
//-------------------------------------------------------- 
// bigStepBackward(): take a big step Backward once 
//-------------------------------------------------------- 
  int bigStepBackward(void) 
  { 
    #ifdef PROGRAM 
    printf("running bigStepBackward\n"); 
    #endif// PROGRAM 
 
    // set drive direction 
    BitWrPortI(PGDR, &PGDRShadow, DRIVE_BACKWARD, 
PORT_DRIVE_MOTOR_DIRECTION); 
 
    // check if brakes are on with _brake_status variable 
    // if true -> run unbrake() 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
    if ( left_brake_status != -1 || right_brake_status != -1 ) 
       unbrake(); 
 
    // ramp up to speed, move set step length, ramp down 
    ramp(1,1,UP); 
    trSleep(BIG_STEP_LENGTH); 
    ramp(1,1,DOWN); 
 
    return 0; 
  } // end bigStepBackward() 
 
//-------------------------------------------------------- 
// contForward(): move trolley continuously Froward 
// Not used cause buggy 
//-------------------------------------------------------- 



 233

  int contForward(void) 
  { 
    #ifdef PROGRAM 
    printf("running contForward\n"); 
    #endif// PROGRAM 
 
    // check to see if brakes are fully open 
//    if (  left_brake_status != -1 && right_brake_status != -1 ) 
//       unbrake(); 
 
    BitWrPortI(PGDR, &PGDRShadow, DRIVE_FORWARD, 0); // set drive 
direction 
    // turn on drive motor @ duty_cycle 
    // pwm_set( PWM_CHANNEL, (int)(((100-duty_cycle)*0.01)*1024), 
PWM_OPTION ); 
    // movingStatus = MOVING; // set moving status variable 
    // ramp(1,1,UP); // ramp drive motor up to duty_cycle 
    // continuousMoveCheck(); 
    stop(); 
  } // end contForward() 
 
//-------------------------------------------------------- 
// contBackward(): move trolley continuously Backward 
// Not used cause buggy 
//-------------------------------------------------------- 
  int contBackward(void) 
  { 
    #ifdef PROGRAM 
    printf("running contBackward\n"); 
    #endif// PROGRAM 
 
    // 
//    if (  left_brake_status != -1 && right_brake_status != -1 ) 
//       unbrake(); 
 
    BitWrPortI(PGDR, &PGDRShadow, DRIVE_BACKWARD, 0); // set drive 
direction 
    // turn on drive motor @ duty_cycle 
    // pwm_set( PWM_CHANNEL, (int)(((100-duty_cycle)*0.01)*1024), 
PWM_OPTION ); 
    // movingStatus = MOVING; // set moving status variable 
    // ramp(1,1,UP); // ramp motor up to duty_cycle 
    // continuousMoveCheck(); 
    stop(); 
  } // end contBackward() 
 
//-------------------------------------------------------- 
// continuousMoveCheck(): check continually for command input 
//  while executing a continuous move & monitor for stop command 
//  NOT WORKING WELL - because of delay 
//-------------------------------------------------------- 
  void continuousMoveCheck(void) 
  { 
     int receive; 
     int stop2; 
     receive = 1; 
     stop2 = 0; 
     command = 0; 
 
     while ( receive ) // while receiving move command go forward. 
     { 
       tcp_tick(&tcpsock); 
       receive = 0; 
       command = 0; 



 234

       #ifdef PROGRAM 
       printf("Waiting to recieve commands\n"); 
       #endif// PROGRAM 
       trSleep(3); 
       tcp_tick(&tcpsock); 
       trSleep(3); 
       #ifdef PROGRAM 
       printf("Data bytes %d %d\n", 
              sock_dataready(&tcpsock), sock_bytesready(&tcpsock)); 
       #endif// PROGRAM 
       // read all commands looking for a stop 
       while (!stop2 && tcp_tick(&tcpsock)) 
       { 
          if( sock_aread (&tcpsock, (char *)&command, CMD_LENGTH) < 1 ) 
          { 
               #ifdef PROGRAM 
               printf("Stopping because sock_aread() <= 0\n"); 
               #endif// PROGRAM 
               receive = 0; 
               stop(); 
               break; 
          } 
          else 
          { 
          #ifdef PROGRAM 
          printf("Command received = %d\n", command); 
          #endif// PROGRAM 
          switch ( command ) 
          { 
             case TRC_CONT_FORWARD: 
             case TRC_CONT_BACKWARD: 
               #ifdef PROGRAM 
               printf("Move\n"); 
               #endif// PROGRAM 
               receive = 1; 
               break; 
             default: 
               #ifdef PROGRAM 
               printf("Stop\n"); 
               #endif// PROGRAM 
               receive = 0; 
               stop2 = 1; 
               stop(); 
               break; 
          } 
          } 
       } // end while ( bytes in socket && not stop ) 
     } // end while(i) 
 
     if ( stop2 ) 
     { 
       #ifdef PROGRAM 
       printf("Received Stop Command.\n"); 
       #endif// PROGRAM 
     } 
     else 
     { 
       #ifdef PROGRAM 
       printf("Lost Connection with Server.\n"); 
       #endif// PROGRAM 
     } 
  } // end continuousMoveCheck() 
 
//-------------------------------------------------------- 



 235

// brake(): engage brakes 
//-------------------------------------------------------- 
  int brake(void) 
  { 
    short cmd; 
    #ifdef PROGRAM 
    printf("running brake\n"); 
    #endif// PROGRAM 
 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
    #ifdef PROGRAM 
    printf("starting left brake  = %d\n", left_brake_status); 
    printf("starting right brake = %d\n", right_brake_status); 
    #endif// PROGRAM 
 
    // set brake motor direction 
    BitWrPortI(PGDR, &PGDRShadow, BRAKES_LOCK, 
PORT_LEFT_BRAKE_DIRECTION); 
    BitWrPortI(PGDR, &PGDRShadow, BRAKES_LOCK, 
PORT_RIGHT_BRAKE_DIRECTION); 
 
    while ( !( (left_brake_status == 1) && (right_brake_status == 1) ) ) 
    { 
      tcp_tick(&tcpsock); 
      if ( left_brake_status == 1 ) // if lock switch pressed turn off 
brake 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_OFF, 
PORT_LEFT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_4); 
        #endif// NOT PROGRAM 
      } 
      else // if brakes not locked turn on 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_ON, 
PORT_LEFT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_4); 
        #endif// NOT PROGRAM 
      } 
 
      if ( right_brake_status == 1 ) // if lock switch press turn off 
brake 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_OFF, 
PORT_RIGHT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_6); 
        #endif// NOT PROGRAM 
      } 
      else // if brake not locked turn on 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_ON, 
PORT_RIGHT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_6); 
        #endif// NOT PROGRAM 
      } 
      left_brake_status = checkLeftBrake(); 
      right_brake_status = checkRightBrake(); 
    } // end while ( braking ) 
 



 236

    stop(); // needed because problem with dumping commands 
    // Send message "Brake On" 
    cmd = TRM_BRAKES_ON; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
    #ifdef PROGRAM 
    printf("ending left brake  = %d\n", left_brake_status); 
    printf("ending right brake = %d\n", right_brake_status); 
    #endif// PROGRAM 
  } // end brake() 
 
//-------------------------------------------------------- 
// unbrake(): disengage brakes 
//-------------------------------------------------------- 
  int unbrake(void) 
  { 
    short cmd; 
    #ifdef PROGRAM 
    printf("running unbrake\n"); 
    #endif// PROGRAM 
 
    left_brake_status = checkLeftBrake(); 
    right_brake_status = checkRightBrake(); 
    #ifdef PROGRAM 
    printf("starting left brake  = %d\n", left_brake_status); 
    printf("starting right brake = %d\n", right_brake_status); 
    #endif// PROGRAM 
 
    // set brake motor direction 
    BitWrPortI(PGDR, &PGDRShadow, BRAKES_UNLOCK, 
PORT_LEFT_BRAKE_DIRECTION); 
    BitWrPortI(PGDR, &PGDRShadow, BRAKES_UNLOCK, 
PORT_RIGHT_BRAKE_DIRECTION); 
 
    while ( !( (left_brake_status == -1) && (right_brake_status == -1) ) 
) 
    { 
      tcp_tick(&tcpsock); 
      if ( left_brake_status == -1 ) // if unlock switch pressed turn 
off brake 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_OFF, 
PORT_LEFT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_5); 
        #endif// NOT PROGRAM 
      } 
      else // when not unlocked turn on 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_ON, 
PORT_LEFT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_5); 
        #endif// NOT PROGRAM 
      } 
      if ( right_brake_status == -1 ) // if unlock switch pressed turn 
off brake 
      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_OFF, 
PORT_RIGHT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_ON, PORT_LED_7); 
        #endif// NOT PROGRAM 
      } 
      else // when not unlocked turn on 



 237

      { 
        BitWrPortI(PGDR, &PGDRShadow, BRAKES_ON, 
PORT_RIGHT_BRAKE_CONTROL); 
        #ifndef PROGRAM 
        BitWrPortI(PCDR, &PCDRShadow, LED_OFF, PORT_LED_7); 
        #endif// NOT PROGRAM 
      } 
      left_brake_status = checkLeftBrake(); 
      right_brake_status = checkRightBrake(); 
    } // end while ( braking ) 
 
    stop(); // needed because problem with dumping commands 
    // Send message "Brake Off" 
    cmd = TRM_BRAKES_OFF; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
    #ifdef PROGRAM 
    printf("ending left brake  = %d\n", left_brake_status); 
    printf("ending right brake = %d\n", right_brake_status); 
    #endif// PROGRAM 
  } // end unbrake() 
 
//-------------------------------------------------------- 
// checkLeftBrake(): check left brake status 
//   return value: -> locked = 1, unlocked = -1, & unknow = 0 
//-------------------------------------------------------- 
  int checkLeftBrake(void) 
  { 
    // read switch 1 left brake -> locked 
    if ( !BitRdPortI(PFDR, PORT_LEFT_BRAKE_SWITCH_LOCK)) 
    { 
      #ifdef PROGRAM 
      printf("Switch 0 depressed.\n"); 
      #endif// PROGRAM 
      return 1; 
    } 
    // read switch 2 left brake -> unlocked 
    else if ( !BitRdPortI(PFDR, PORT_LEFT_BRAKE_SWITCH_UNLOCK)) 
    { 
      #ifdef PROGRAM 
      printf("Switch 1 depressed.\n"); 
      #endif// PROGRAM 
      return -1; 
    } 
    else // neither switch pressed 
      return 0; 
  } // end checkLeftBrake() 
 
//-------------------------------------------------------- 
// checkRightBrake(): check Right brake status 
//   return value: -> locked = 1, unlocked = -1, & unknow = 0 
//-------------------------------------------------------- 
  int checkRightBrake(void) 
  { 
    // read switch 3 right brake -> locked 
    if ( !BitRdPortI(PFDR, PORT_RIGHT_BRAKE_SWITCH_LOCK)) 
    { 
      #ifdef PROGRAM 
      printf("Switch 2 depressed.\n"); 
      #endif// PROGRAM 
      return 1; 
    } 
    // read switch 4 right brake -> unlocked 
    else if ( !BitRdPortI(PFDR, PORT_RIGHT_BRAKE_SWITCH_UNLOCK)) 
    { 



 238

      #ifdef PROGRAM 
      printf("Switch 3 depressed.\n"); 
      #endif// PROGRAM 
      return -1; 
    } 
    else // neither switch pressed 
      return 0; 
  } // end checkRightBrake() 
 
//-------------------------------------------------------- 
// checkBrakes(): check brake status 
//                only for testing 
//-------------------------------------------------------- 
  int checkBrakes(void) 
  { 
    if ( !BitRdPortI(PFDR, 0)) // read switch 1 
      printf("Switch 1 depressed.\n"); 
    if ( !BitRdPortI(PFDR, 1)) // read switch 2 
      printf("Switch 2 depressed.\n"); 
    if ( !BitRdPortI(PFDR, 2)) // read switch 3 
      printf("Switch 3 depressed.\n"); 
    if ( !BitRdPortI(PFDR, 3)) // read switch 4 
      printf("Switch 4 depressed.\n"); 
  } // end checkBrakes() 
 
//-------------------------------------------------------- 
// speedUp(): increase drive speed -> increase PWM duty cycle 
//-------------------------------------------------------- 
  int speedUp(void) 
  { 
    short cmd; 
    #ifdef PROGRAM 
    printf("running speedUp\n"); 
    #endif// PROGRAM 
    if ( duty_cycle < 100 ) 
    { 
      duty_cycle += 10; 
      #ifdef PROGRAM 
      printf("Current drive speed = %d%%\n", duty_cycle); 
      printf("Calc'ed duty cycle = %d\n", (int)(((100-
duty_cycle)*0.01)*1024)); 
      #endif// PROGRAM 
    } 
    else if ( duty_cycle == 100 ) 
    { 
      #ifdef PROGRAM 
      printf("Speed at maximum -> %d%%\n", duty_cycle); 
      printf("Calc'ed duty cycle = %d\n", (int)(((100-
duty_cycle)*0.01)*1024)); 
      #endif// PROGRAM 
    } 
 
    cmd = TRM_SPEED; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
    cmd = (short)duty_cycle; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
  } // end speedUp() 
 
//-------------------------------------------------------- 
// speedDown(): decrease drive speed -> decrease PWM duty cycle 
//-------------------------------------------------------- 
  int speedDown(void) 
  { 
    short cmd; 



 239

    #ifdef PROGRAM 
    printf("running speedDown\n"); 
    #endif// PROGRAM 
    if ( duty_cycle > 0 ) 
    { 
      duty_cycle -= 10; 
      #ifdef PROGRAM 
      printf("Current drive speed = %d%%\n", duty_cycle); 
      printf("Calc'ed duty cycle = %d\n", (int)((100-
duty_cycle)*10.24)); 
      #endif// PROGRAM 
    } 
    else if ( duty_cycle == 0 ) 
    { 
      #ifdef PROGRAM 
      printf("Speed at minimum -> %d%%\n", duty_cycle); 
      printf("Calc'ed duty cycle = %d\n", (int)((100-
duty_cycle)*10.24)); 
      #endif// PROGRAM 
    } 
 
    cmd = TRM_SPEED; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
    cmd = (short)duty_cycle; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
  } // end speedDown() 
 
//-------------------------------------------------------- 
// enableDetector(): turn on power to detector 
//-------------------------------------------------------- 
  int enableDetector(void) 
  { 
    short cmd; 
    #ifdef PROGRAM 
    printf("running enableDetector\n"); 
    #endif// PROGRAM 
    // turn on detector power relay 
    BitWrPortI(PGDR, &PGDRShadow, DETECTOR_ON, PORT_DETECTOR_POWER); 
    BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_3); 
    cmd = TRM_DET_ENABLE; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
  } // end enableDetector() 
 
//-------------------------------------------------------- 
// disableDetector(): turn off power to detector 
//-------------------------------------------------------- 
  int disableDetector(void) 
  { 
    short cmd; 
    #ifdef PROGRAM 
    printf("running disableDetector\n"); 
    #endif// PROGRAM 
    // turn off detector power relay 
    BitWrPortI(PGDR, &PGDRShadow, DETECTOR_OFF, PORT_DETECTOR_POWER); 
    BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); 
    cmd = TRM_DET_DISABLE; 
    sock_awrite(&tcpsock, (char *)&cmd, CMD_LENGTH); 
  } // end disableDetector() 
 
//-------------------------------------------------------- 
// trSleep(): 
//   Function will take up 100*hundMS milliseconds. 
//-------------------------------------------------------- 
  void trSleep(unsigned int hundMS) 



 240

  { 
     unsigned int i; 
     unsigned int j; 
     unsigned int times; 
 
     times = 35500; 
 
     for(j=0;j<hundMS;j++) 
     { 
       for(i=0;i<times;i++); 
     } 
 
     return; 
  } // end trSleep() 
 
//-------------------------------------------------------- 
// trMSleep(): 
//   Function will take up ms milliseconds. 
//-------------------------------------------------------- 
  void trMSleep(unsigned int ms) 
  { 
     unsigned int i; 
     unsigned int j; 
 
     for(j=0;j<ms;j++) 
     { 
       for(i=0;i<500;i++); 
     } 
 
     return; 
  } // end trMSleep() 
 
//-------------------------------------------------------- 
// ramp():     used to start/stop drive motor slowly 
//   time:     delay time between ramp steps in ms 
//   interval: amount to jump pwm each step, from 0 - 1024 
//   dir:      sets ramp direction to ramp up or down 
//             1 -> ramp speed up; 0 -> ramp speed down 
//-------------------------------------------------------- 
  void ramp(unsigned int time, unsigned int interval, char dir) 
  { 
    int i; 
    unsigned int maxspeed; 
 
    maxspeed = (unsigned int)((100 - duty_cycle)*10.24); 
 
    if(dir) 
    { 
      for(i=1024; i>maxspeed; i-=interval) 
      { 
        trMSleep(time); 
        pwm_set(PWM_CHANNEL, i, PWM_OPTION); // ramp drive up 
      } 
    } 
    else 
    { 
      for(i=maxspeed; i<1024; i+=interval) 
      { 
        trMSleep(time); 
        pwm_set(PWM_CHANNEL, i, PWM_OPTION); // ramp drive down 
      } 
    } 
 
    return; 



 241

  } //end ramp() 
 
//-------------------------------------------------------- 
// clearRecBuffer(): reads commands waiting on input buffer 
//  used to get rid of commands set by server while the 
//  trolley is in the middle of another command 
//  otherwise all commands will be stored and excuted 
//-------------------------------------------------------- 
  void clearRecBuffer(void) 
  { 
    while ( sock_dataready(&tcpsock) != 0 ) 
    { 
       tcp_tick(&tcpsock); 
       if ( (sock_aread (&tcpsock, NULL, CMD_LENGTH)) == 2 ) 
       { 
          #ifdef PROGRAM 
          printf("\nDumped one command\n"); 
          #endif// PROGRAM 
       } 
 
       // blink when dumping commands 
       BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_3); // LED on 
       trMSleep(25); 
       BitWrPortI(PFDR, &PFDRShadow, LED_OFF, PORT_LED_3); // LED off 
       trMSleep(25); 
 
       // read Detector Power status and reset LED 
       if ( (BitRdPortI(PGDR, PORT_DETECTOR_POWER)) == DETECTOR_ON ) 
       { 
          BitWrPortI(PFDR, &PFDRShadow, LED_ON, PORT_LED_3); 
       } 
 
    } // end while ( bytes in socket ) 
  } // end clearRecBuffer() 
 
//-------------------------------------------------------- 
// portInit() : initializes ports C, F, & G 
//-------------------------------------------------------- 
  int portInit(void) 
  { 
    // Initialize C Port: LEDs -> C6 & C7 used for serial debug 
    //   Bit  I/O  Usage 
    //   ---  ---  -------------------------- 
    //     0   o   LED 1 
    //     1   i   input not used 
    //     2   o   LED 2 
    //     3   i   input not used 
    //     4   o   LED 3 
    //     5   i   input not used 
    //     6   o   LED 4 
    //     7   i   input not used 
    // LEDs use same port as programming cable 
    // so disable them when running with cable to allow feedback 
    #ifndef PROGRAM 
    WrPortI(PCFR,  &PCFRShadow,  0x00);    //set all bits = normal 
    WrPortI(PCDR,  &PCDRShadow,  0x00);    //set all bits low 
    #endif// NOT PROGRAM 
 
    // Initialize F Port: Brake Switches and Drive Motor PWM 
    //   Bit  I/O  Usage 
    //   ---  ---  -------------------------- 
    //     0   i   Brake switch LeftFront  locked   switch 0 
    //     1   i   Brake switch LeftFront  unlocked    "   1 
    //     2   i   Brake switch RightFront locked      "   2 



 242

    //     3   i   Brake switch RightFront unlocked    "   3 
    //     4   o   Drive Motor Control - PWM 
    //     5   o   Reserved 
    //     6   o   Reserved 
    //     7   o   -> Doesn't work - fried at the chip level 
    WrPortI(PFCR,  &PFCRShadow,  0x00);    //clear all bits for pclk/2 
    WrPortI(PFFR,  &PFFRShadow,  0x10);    //set bit 4 -> PWM, others = 
normal 
    WrPortI(PFDCR, &PFDCRShadow, 0x00);    //set all bits to drive high-
low 
    WrPortI(PFDR,  &PFDRShadow,  0x10);    //set all bits low, except 4 
    WrPortI(PFDDR, &PFDDRShadow, 0xF0);    //set bits 0-3 = input, 4-7 = 
output 
 
    // Initialize G Port: Motor Control/Direction/Brake and Detector 
Power 
    //   Bit  I/O  Usage 
    //   ---  ---  -------------------------- 
    //     0   o   Drive Motor Direction 
    //     1   o   LeftFront Brake Direction 
    //     2   o   LeftFront Brake Control 
    //     3   o   RightFront Brake Direction 
    //     4   o   RightFront Brake Control 
    //     5   o   Detector Power Enable 
    //     6   o   Motor Brake 
    //     7   o   Reserved 
    WrPortI(PGCR,  &PGCRShadow,  0x00);    //clear all bits for pclk/2 
    WrPortI(PGFR,  &PGFRShadow,  0x00);    //clear all bits for normal 
function 
    WrPortI(PGDCR, &PGDCRShadow, 0x00);    //set all bits to drive high-
low 
    WrPortI(PGDR,  &PGDRShadow,  0x34);    //set all bits low, except 2, 
4, & 5 
    WrPortI(PGDDR, &PGDDRShadow, 0xFF);    //set all bits to output 
 
    return 0; 
  } // end portInit() 
//-------------------------------------------------------- 
 
 


	OVERHEAD TRAFFIC DETECTOR MOUNTING SYSTEM
	PROJECT SUMMARY
	ACKNOWLEDGMENT
	CHAPTER 1
	INTRODUCTION
	1.1 Background
	1.2 Problem Overview
	1.3 Previous Work
	1.4 Current Work

	CHAPTER 2
	THE COLLAPSIBLE TRUSS
	2.1 Specifications
	2.2 Design Concept
	2.3 Geometry Implemented
	2.4 Setup Configurations
	2.5 I-80 Testing Height
	2.6 Old Hutchison Road Testing
	2.7 Components of the Collapsible Truss
	2.7.1 Ladders
	2.7.2 Fish Plating
	2.7.3 PVC Inserts
	2.7.4 All-Thread Rod
	2.7.5 Nuts and Washers
	2.7.6 Genie Lifts
	2.7.7 Stabilization Ropes


	CHAPTER 3
	BASIC DESIGN OF THE MOUNTING SYSTEM
	3.1 Trolley
	3.2 Lifting Mechanism
	3.3 Construction of the Lifting Mechanism
	3.3.1 Specifications
	3.3.2 First Prototype
	3.3.3 Construction Strategy
	3.3.4 The Final Off-the-Shelf Parts Prototype
	3.3.5 Deployable Trolley-ABDS Lifting Mechanism


	CHAPTER 4
	MECHANICAL COMPONENTS OF THE LIFTING MECHANISM
	4.1 Plug
	4.2 Free-Spinning Ball Bearing on the Plug
	4.3 Sleeve
	4.4 Slider
	4.5 Support Flange
	4.6 Plate Flanges
	4.7 Plates
	4.7.1 Motor Plate
	4.7.2 Stationary Plate
	4.7.3 Mobile Plate

	4.8 Toggle Bone
	4.9 Final Alignment Cones
	4.10 Stabilization Spring
	4.11 Trolley Stop
	4.12 C-Channel Insulating Bushings
	4.13 Pulley-Drum Cover

	CHAPTER 5
	ELECTRICAL COMPONENTS OF THE LIFTING MECHANISM
	5.1 Speed Control Switch
	Limit Switch
	5.3 Power Transmission Spring Assembly
	5.4 Delay Circuit
	5.5 Motor
	5.5.1 Torque Capability
	5.5.2 Gearbox Design
	5.5.3 Output Shaft Speed
	5.5.4 Overhung Load Rating
	5.5.5 Brand and Distributor
	5.5.6 Power Source

	5.6 Wiring

	CHAPTER 6
	ENVIRONMENTAL FACTORS
	Summer Endurance Testing
	6.2 Winter Endurance Testing

	CHAPTER 7
	CAMERA LIFTING MECHANISM
	CHAPTER 8
	8.1 Clutch
	Limit Switch
	8.3 Sleeve Friction
	8.4 Power Transmission Through Final Alignment Cones
	8.5 Test Lifting Mechanism to Failure
	8.6 Mobile Truss Components

	CHAPTER 9
	THE TROLLEY
	9.2 Original prototype
	9.3 Trolley Platform
	9.4 Drive System
	9.5 Alignment Wheels
	9.6 Brakes
	9.7 Lift Gates
	9.8 Power
	9.9 Electronics and Control System
	9.10 Future Work and Improvements

	CHAPTER 10
	CONCLUSION
	References
	Appendix I, ABDS-Trolley LM Construction Drawings
	Appendix III, Truss Construction Drawings
	Appendix IV, Trolley Lifting Mechanism Bill of Materials
	Appendix V, Camera Lifting Mechanism Bill of Materials
	Appendix VI, Truss Bill of Materials
	Appendix VII, Company Contact Information
	Appendix VIII, Industrial Scaffolding Pictures
	Appendix IX, Electrical Schematics
	Appendix A: Mechanical Drawings
	Appendix B: Parts List
	Appendix C: Electrical Schematic
	Appendix D: Trolley Opcodes
	Appendix E: Trolley Operator Control Program
	Readme
	Header files
	callbacks.h
	control.h
	icons.h
	interface.h
	server.h


	Source Files
	callbacks.c
	client.c
	control.c
	interface.c
	main.c
	server.c


	Makefile

	Appendix F: Trolley Microprocessor Program

